Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑦 = ( ℜ ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 = ( ℜ ‘ 𝐵 ) ) |
2 |
1
|
itgeq2dv |
⊢ ( 𝑦 = ( ℜ ‘ 𝐵 ) → ∫ 𝐴 𝑦 d 𝑥 = ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) |
3 |
|
oveq1 |
⊢ ( 𝑦 = ( ℜ ‘ 𝐵 ) → ( 𝑦 · ( vol ‘ 𝐴 ) ) = ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑦 = ( ℜ ‘ 𝐵 ) → ( ∫ 𝐴 𝑦 d 𝑥 = ( 𝑦 · ( vol ‘ 𝐴 ) ) ↔ ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) ) |
5 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
6 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝑦 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝑦 ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ dom vol ) |
8 |
|
simp2 |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( vol ‘ 𝐴 ) ∈ ℝ ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( vol ‘ 𝐴 ) ∈ ℝ ) |
10 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
12 |
|
iblconst |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝑦 ∈ ℂ ) → ( 𝐴 × { 𝑦 } ) ∈ 𝐿1 ) |
13 |
7 9 11 12
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐴 × { 𝑦 } ) ∈ 𝐿1 ) |
14 |
6 13
|
eqeltrrid |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ 𝑦 ) ∈ 𝐿1 ) |
15 |
5 14
|
itgrevallem1 |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ∫ 𝐴 𝑦 d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) ) ) |
16 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) |
17 |
16
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) ) |
18 |
17
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) ) ) |
19 |
|
0re |
⊢ 0 ∈ ℝ |
20 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
21 |
10 19 20
|
sylancl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
22 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
23 |
19 10 22
|
sylancr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
24 |
|
elrege0 |
⊢ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) ) |
25 |
21 23 24
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ) |
26 |
|
itg2const |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) ) ) = ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
27 |
7 9 25 26
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) ) ) = ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
28 |
18 27
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
29 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) |
30 |
29
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) ) |
31 |
30
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) ) ) |
32 |
|
renegcl |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → - 𝑦 ∈ ℝ ) |
34 |
|
ifcl |
⊢ ( ( - 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ℝ ) |
35 |
33 19 34
|
sylancl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ℝ ) |
36 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) |
37 |
19 33 36
|
sylancr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) |
38 |
|
elrege0 |
⊢ ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) ) |
39 |
35 37 38
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ) |
40 |
|
itg2const |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) ) ) = ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
41 |
7 9 39 40
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) ) ) = ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
42 |
31 41
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) = ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
43 |
28 42
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) ) = ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) − ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) ) |
44 |
21
|
recnd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℂ ) |
45 |
35
|
recnd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ℂ ) |
46 |
8
|
recnd |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( vol ‘ 𝐴 ) ∈ ℂ ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( vol ‘ 𝐴 ) ∈ ℂ ) |
48 |
44 45 47
|
subdird |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) − if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) · ( vol ‘ 𝐴 ) ) = ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) − ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) ) |
49 |
|
max0sub |
⊢ ( 𝑦 ∈ ℝ → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) − if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) = 𝑦 ) |
50 |
49
|
adantl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) − if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) = 𝑦 ) |
51 |
50
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) − if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) · ( vol ‘ 𝐴 ) ) = ( 𝑦 · ( vol ‘ 𝐴 ) ) ) |
52 |
43 48 51
|
3eqtr2rd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 · ( vol ‘ 𝐴 ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) ) ) |
53 |
15 52
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ∫ 𝐴 𝑦 d 𝑥 = ( 𝑦 · ( vol ‘ 𝐴 ) ) ) |
54 |
53
|
ralrimiva |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∀ 𝑦 ∈ ℝ ∫ 𝐴 𝑦 d 𝑥 = ( 𝑦 · ( vol ‘ 𝐴 ) ) ) |
55 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
56 |
55
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
57 |
4 54 56
|
rspcdva |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) |
58 |
|
simpl |
⊢ ( ( 𝑦 = ( ℑ ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 = ( ℑ ‘ 𝐵 ) ) |
59 |
58
|
itgeq2dv |
⊢ ( 𝑦 = ( ℑ ‘ 𝐵 ) → ∫ 𝐴 𝑦 d 𝑥 = ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) |
60 |
|
oveq1 |
⊢ ( 𝑦 = ( ℑ ‘ 𝐵 ) → ( 𝑦 · ( vol ‘ 𝐴 ) ) = ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) |
61 |
59 60
|
eqeq12d |
⊢ ( 𝑦 = ( ℑ ‘ 𝐵 ) → ( ∫ 𝐴 𝑦 d 𝑥 = ( 𝑦 · ( vol ‘ 𝐴 ) ) ↔ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) ) |
62 |
|
imcl |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
63 |
62
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
64 |
61 54 63
|
rspcdva |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) |
65 |
64
|
oveq2d |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ( i · ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) ) |
66 |
|
ax-icn |
⊢ i ∈ ℂ |
67 |
66
|
a1i |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
68 |
63
|
recnd |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
69 |
67 68 46
|
mulassd |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐵 ) ) · ( vol ‘ 𝐴 ) ) = ( i · ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) ) |
70 |
65 69
|
eqtr4d |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ( ( i · ( ℑ ‘ 𝐵 ) ) · ( vol ‘ 𝐴 ) ) ) |
71 |
57 70
|
oveq12d |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) + ( ( i · ( ℑ ‘ 𝐵 ) ) · ( vol ‘ 𝐴 ) ) ) ) |
72 |
56
|
recnd |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
73 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
74 |
66 68 73
|
sylancr |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
75 |
72 74 46
|
adddird |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) · ( vol ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) + ( ( i · ( ℑ ‘ 𝐵 ) ) · ( vol ‘ 𝐴 ) ) ) ) |
76 |
71 75
|
eqtr4d |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) · ( vol ‘ 𝐴 ) ) ) |
77 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
78 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
79 |
|
iblconst |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ 𝐿1 ) |
80 |
78 79
|
eqeltrrid |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
81 |
77 80
|
itgcnval |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
82 |
|
replim |
⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
83 |
82
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
84 |
83
|
oveq1d |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( vol ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) · ( vol ‘ 𝐴 ) ) ) |
85 |
76 81 84
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∫ 𝐴 𝐵 d 𝑥 = ( 𝐵 · ( vol ‘ 𝐴 ) ) ) |