| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
| 2 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
| 3 |
|
iftrue |
⊢ ( 0 ≤ 𝐴 → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 𝐴 ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 𝐴 ) |
| 5 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 6 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ∈ ℝ ) |
| 8 |
7
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ∈ ℝ* ) |
| 9 |
|
le0neg2 |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ - 𝐴 ≤ 0 ) ) |
| 10 |
9
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ≤ 0 ) |
| 11 |
|
xrmaxeq |
⊢ ( ( 0 ∈ ℝ* ∧ - 𝐴 ∈ ℝ* ∧ - 𝐴 ≤ 0 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = 0 ) |
| 12 |
5 8 10 11
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = 0 ) |
| 13 |
4 12
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( 𝐴 − 0 ) ) |
| 14 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 16 |
15
|
subid1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 17 |
13 16
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = 𝐴 ) |
| 18 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℝ* ) |
| 20 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ≤ 0 ) |
| 21 |
|
xrmaxeq |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 0 ) |
| 22 |
5 19 20 21
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 0 ) |
| 23 |
|
le0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
| 24 |
23
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 0 ≤ - 𝐴 ) |
| 25 |
24
|
iftrued |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = - 𝐴 ) |
| 26 |
22 25
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( 0 − - 𝐴 ) ) |
| 27 |
|
df-neg |
⊢ - - 𝐴 = ( 0 − - 𝐴 ) |
| 28 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℂ ) |
| 29 |
28
|
negnegd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → - - 𝐴 = 𝐴 ) |
| 30 |
27 29
|
eqtr3id |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( 0 − - 𝐴 ) = 𝐴 ) |
| 31 |
26 30
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = 𝐴 ) |
| 32 |
1 2 17 31
|
lecasei |
⊢ ( 𝐴 ∈ ℝ → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) − if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = 𝐴 ) |