| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
| 2 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 3 |
|
iftrue |
|- ( 0 <_ A -> if ( 0 <_ A , A , 0 ) = A ) |
| 4 |
3
|
adantl |
|- ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ A , A , 0 ) = A ) |
| 5 |
|
0xr |
|- 0 e. RR* |
| 6 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 7 |
6
|
adantr |
|- ( ( A e. RR /\ 0 <_ A ) -> -u A e. RR ) |
| 8 |
7
|
rexrd |
|- ( ( A e. RR /\ 0 <_ A ) -> -u A e. RR* ) |
| 9 |
|
le0neg2 |
|- ( A e. RR -> ( 0 <_ A <-> -u A <_ 0 ) ) |
| 10 |
9
|
biimpa |
|- ( ( A e. RR /\ 0 <_ A ) -> -u A <_ 0 ) |
| 11 |
|
xrmaxeq |
|- ( ( 0 e. RR* /\ -u A e. RR* /\ -u A <_ 0 ) -> if ( 0 <_ -u A , -u A , 0 ) = 0 ) |
| 12 |
5 8 10 11
|
mp3an2i |
|- ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ -u A , -u A , 0 ) = 0 ) |
| 13 |
4 12
|
oveq12d |
|- ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = ( A - 0 ) ) |
| 14 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 15 |
14
|
adantr |
|- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
| 16 |
15
|
subid1d |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A - 0 ) = A ) |
| 17 |
13 16
|
eqtrd |
|- ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) |
| 18 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 19 |
18
|
adantr |
|- ( ( A e. RR /\ A <_ 0 ) -> A e. RR* ) |
| 20 |
|
simpr |
|- ( ( A e. RR /\ A <_ 0 ) -> A <_ 0 ) |
| 21 |
|
xrmaxeq |
|- ( ( 0 e. RR* /\ A e. RR* /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = 0 ) |
| 22 |
5 19 20 21
|
mp3an2i |
|- ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = 0 ) |
| 23 |
|
le0neg1 |
|- ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) |
| 24 |
23
|
biimpa |
|- ( ( A e. RR /\ A <_ 0 ) -> 0 <_ -u A ) |
| 25 |
24
|
iftrued |
|- ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ -u A , -u A , 0 ) = -u A ) |
| 26 |
22 25
|
oveq12d |
|- ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = ( 0 - -u A ) ) |
| 27 |
|
df-neg |
|- -u -u A = ( 0 - -u A ) |
| 28 |
14
|
adantr |
|- ( ( A e. RR /\ A <_ 0 ) -> A e. CC ) |
| 29 |
28
|
negnegd |
|- ( ( A e. RR /\ A <_ 0 ) -> -u -u A = A ) |
| 30 |
27 29
|
eqtr3id |
|- ( ( A e. RR /\ A <_ 0 ) -> ( 0 - -u A ) = A ) |
| 31 |
26 30
|
eqtrd |
|- ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) |
| 32 |
1 2 17 31
|
lecasei |
|- ( A e. RR -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) |