Metamath Proof Explorer


Theorem max0sub

Description: Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion max0sub Aif0AA0if0AA0=A

Proof

Step Hyp Ref Expression
1 0red A0
2 id AA
3 iftrue 0Aif0AA0=A
4 3 adantl A0Aif0AA0=A
5 0xr 0*
6 renegcl AA
7 6 adantr A0AA
8 7 rexrd A0AA*
9 le0neg2 A0AA0
10 9 biimpa A0AA0
11 xrmaxeq 0*A*A0if0AA0=0
12 5 8 10 11 mp3an2i A0Aif0AA0=0
13 4 12 oveq12d A0Aif0AA0if0AA0=A0
14 recn AA
15 14 adantr A0AA
16 15 subid1d A0AA0=A
17 13 16 eqtrd A0Aif0AA0if0AA0=A
18 rexr AA*
19 18 adantr AA0A*
20 simpr AA0A0
21 xrmaxeq 0*A*A0if0AA0=0
22 5 19 20 21 mp3an2i AA0if0AA0=0
23 le0neg1 AA00A
24 23 biimpa AA00A
25 24 iftrued AA0if0AA0=A
26 22 25 oveq12d AA0if0AA0if0AA0=0A
27 df-neg A=0A
28 14 adantr AA0A
29 28 negnegd AA0A=A
30 27 29 eqtr3id AA00A=A
31 26 30 eqtrd AA0if0AA0if0AA0=A
32 1 2 17 31 lecasei Aif0AA0if0AA0=A