Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgmpt.1 | |
|
itgcl.2 | |
||
Assertion | itgcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgmpt.1 | |
|
2 | itgcl.2 | |
|
3 | eqid | |
|
4 | 3 | dfitg | |
5 | fzfid | |
|
6 | ax-icn | |
|
7 | elfznn0 | |
|
8 | 7 | adantl | |
9 | expcl | |
|
10 | 6 8 9 | sylancr | |
11 | elfzelz | |
|
12 | eqidd | |
|
13 | eqidd | |
|
14 | 12 13 2 1 | iblitg | |
15 | 11 14 | sylan2 | |
16 | 15 | recnd | |
17 | 10 16 | mulcld | |
18 | 5 17 | fsumcl | |
19 | 4 18 | eqeltrid | |