Metamath Proof Explorer


Theorem itgcl

Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014)

Ref Expression
Hypotheses itgmpt.1 φxABV
itgcl.2 φxAB𝐿1
Assertion itgcl φABdx

Proof

Step Hyp Ref Expression
1 itgmpt.1 φxABV
2 itgcl.2 φxAB𝐿1
3 eqid Bik=Bik
4 3 dfitg ABdx=k=03ik2xifxA0BikBik0
5 fzfid φ03Fin
6 ax-icn i
7 elfznn0 k03k0
8 7 adantl φk03k0
9 expcl ik0ik
10 6 8 9 sylancr φk03ik
11 elfzelz k03k
12 eqidd φxifxA0BikBik0=xifxA0BikBik0
13 eqidd φxABik=Bik
14 12 13 2 1 iblitg φk2xifxA0BikBik0
15 11 14 sylan2 φk032xifxA0BikBik0
16 15 recnd φk032xifxA0BikBik0
17 10 16 mulcld φk03ik2xifxA0BikBik0
18 5 17 fsumcl φk=03ik2xifxA0BikBik0
19 4 18 eqeltrid φABdx