Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgadd.1 | |
|
itgadd.2 | |
||
itgadd.3 | |
||
itgadd.4 | |
||
Assertion | itgadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgadd.1 | |
|
2 | itgadd.2 | |
|
3 | itgadd.3 | |
|
4 | itgadd.4 | |
|
5 | iblmbf | |
|
6 | 2 5 | syl | |
7 | 6 1 | mbfmptcl | |
8 | iblmbf | |
|
9 | 4 8 | syl | |
10 | 9 3 | mbfmptcl | |
11 | 7 10 | readdd | |
12 | 11 | itgeq2dv | |
13 | 7 | recld | |
14 | 7 | iblcn | |
15 | 2 14 | mpbid | |
16 | 15 | simpld | |
17 | 10 | recld | |
18 | 10 | iblcn | |
19 | 4 18 | mpbid | |
20 | 19 | simpld | |
21 | 13 16 17 20 13 17 | itgaddlem2 | |
22 | 12 21 | eqtrd | |
23 | 7 10 | imaddd | |
24 | 23 | itgeq2dv | |
25 | 7 | imcld | |
26 | 15 | simprd | |
27 | 10 | imcld | |
28 | 19 | simprd | |
29 | 25 26 27 28 25 27 | itgaddlem2 | |
30 | 24 29 | eqtrd | |
31 | 30 | oveq2d | |
32 | ax-icn | |
|
33 | 32 | a1i | |
34 | 25 26 | itgcl | |
35 | 27 28 | itgcl | |
36 | 33 34 35 | adddid | |
37 | 31 36 | eqtrd | |
38 | 22 37 | oveq12d | |
39 | 13 16 | itgcl | |
40 | 17 20 | itgcl | |
41 | mulcl | |
|
42 | 32 34 41 | sylancr | |
43 | mulcl | |
|
44 | 32 35 43 | sylancr | |
45 | 39 40 42 44 | add4d | |
46 | 38 45 | eqtrd | |
47 | ovexd | |
|
48 | 1 2 3 4 | ibladd | |
49 | 47 48 | itgcnval | |
50 | 1 2 | itgcnval | |
51 | 3 4 | itgcnval | |
52 | 50 51 | oveq12d | |
53 | 46 49 52 | 3eqtr4d | |