Metamath Proof Explorer


Theorem itgadd

Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φxABV
itgadd.2 φxAB𝐿1
itgadd.3 φxACV
itgadd.4 φxAC𝐿1
Assertion itgadd φAB+Cdx=ABdx+ACdx

Proof

Step Hyp Ref Expression
1 itgadd.1 φxABV
2 itgadd.2 φxAB𝐿1
3 itgadd.3 φxACV
4 itgadd.4 φxAC𝐿1
5 iblmbf xAB𝐿1xABMblFn
6 2 5 syl φxABMblFn
7 6 1 mbfmptcl φxAB
8 iblmbf xAC𝐿1xACMblFn
9 4 8 syl φxACMblFn
10 9 3 mbfmptcl φxAC
11 7 10 readdd φxAB+C=B+C
12 11 itgeq2dv φAB+Cdx=AB+Cdx
13 7 recld φxAB
14 7 iblcn φxAB𝐿1xAB𝐿1xAB𝐿1
15 2 14 mpbid φxAB𝐿1xAB𝐿1
16 15 simpld φxAB𝐿1
17 10 recld φxAC
18 10 iblcn φxAC𝐿1xAC𝐿1xAC𝐿1
19 4 18 mpbid φxAC𝐿1xAC𝐿1
20 19 simpld φxAC𝐿1
21 13 16 17 20 13 17 itgaddlem2 φAB+Cdx=ABdx+ACdx
22 12 21 eqtrd φAB+Cdx=ABdx+ACdx
23 7 10 imaddd φxAB+C=B+C
24 23 itgeq2dv φAB+Cdx=AB+Cdx
25 7 imcld φxAB
26 15 simprd φxAB𝐿1
27 10 imcld φxAC
28 19 simprd φxAC𝐿1
29 25 26 27 28 25 27 itgaddlem2 φAB+Cdx=ABdx+ACdx
30 24 29 eqtrd φAB+Cdx=ABdx+ACdx
31 30 oveq2d φiAB+Cdx=iABdx+ACdx
32 ax-icn i
33 32 a1i φi
34 25 26 itgcl φABdx
35 27 28 itgcl φACdx
36 33 34 35 adddid φiABdx+ACdx=iABdx+iACdx
37 31 36 eqtrd φiAB+Cdx=iABdx+iACdx
38 22 37 oveq12d φAB+Cdx+iAB+Cdx=ABdx+ACdx+iABdx+iACdx
39 13 16 itgcl φABdx
40 17 20 itgcl φACdx
41 mulcl iABdxiABdx
42 32 34 41 sylancr φiABdx
43 mulcl iACdxiACdx
44 32 35 43 sylancr φiACdx
45 39 40 42 44 add4d φABdx+ACdx+iABdx+iACdx=ABdx+iABdx+ACdx+iACdx
46 38 45 eqtrd φAB+Cdx+iAB+Cdx=ABdx+iABdx+ACdx+iACdx
47 ovexd φxAB+CV
48 1 2 3 4 ibladd φxAB+C𝐿1
49 47 48 itgcnval φAB+Cdx=AB+Cdx+iAB+Cdx
50 1 2 itgcnval φABdx=ABdx+iABdx
51 3 4 itgcnval φACdx=ACdx+iACdx
52 50 51 oveq12d φABdx+ACdx=ABdx+iABdx+ACdx+iACdx
53 46 49 52 3eqtr4d φAB+Cdx=ABdx+ACdx