Metamath Proof Explorer


Theorem iblabslem

Description: Lemma for iblabs . (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses iblabs.1 φ x A B V
iblabs.2 φ x A B 𝐿 1
iblabs.3 G = x if x A F B 0
iblabs.4 φ x A F B 𝐿 1
iblabs.5 φ x A F B
Assertion iblabslem φ G MblFn 2 G

Proof

Step Hyp Ref Expression
1 iblabs.1 φ x A B V
2 iblabs.2 φ x A B 𝐿 1
3 iblabs.3 G = x if x A F B 0
4 iblabs.4 φ x A F B 𝐿 1
5 iblabs.5 φ x A F B
6 5 iblrelem φ x A F B 𝐿 1 x A F B MblFn 2 x if x A 0 F B F B 0 2 x if x A 0 F B F B 0
7 4 6 mpbid φ x A F B MblFn 2 x if x A 0 F B F B 0 2 x if x A 0 F B F B 0
8 7 simp1d φ x A F B MblFn
9 8 5 mbfdm2 φ A dom vol
10 mblss A dom vol A
11 9 10 syl φ A
12 rembl dom vol
13 12 a1i φ dom vol
14 iftrue x A if x A F B 0 = F B
15 14 adantl φ x A if x A F B 0 = F B
16 5 recnd φ x A F B
17 16 abscld φ x A F B
18 15 17 eqeltrd φ x A if x A F B 0
19 eldifn x A ¬ x A
20 19 adantl φ x A ¬ x A
21 iffalse ¬ x A if x A F B 0 = 0
22 20 21 syl φ x A if x A F B 0 = 0
23 14 mpteq2ia x A if x A F B 0 = x A F B
24 absf abs :
25 24 a1i φ abs :
26 25 16 cofmpt φ abs x A F B = x A F B
27 23 26 eqtr4id φ x A if x A F B 0 = abs x A F B
28 16 fmpttd φ x A F B : A
29 ax-resscn
30 ssid
31 cncfss cn cn
32 29 30 31 mp2an cn cn
33 abscncf abs : cn
34 32 33 sselii abs : cn
35 34 a1i φ abs : cn
36 cncombf x A F B MblFn x A F B : A abs : cn abs x A F B MblFn
37 8 28 35 36 syl3anc φ abs x A F B MblFn
38 27 37 eqeltrd φ x A if x A F B 0 MblFn
39 11 13 18 22 38 mbfss φ x if x A F B 0 MblFn
40 3 39 eqeltrid φ G MblFn
41 reex V
42 41 a1i φ V
43 ifan if x A 0 F B F B 0 = if x A if 0 F B F B 0 0
44 0re 0
45 ifcl F B 0 if 0 F B F B 0
46 5 44 45 sylancl φ x A if 0 F B F B 0
47 max1 0 F B 0 if 0 F B F B 0
48 44 5 47 sylancr φ x A 0 if 0 F B F B 0
49 elrege0 if 0 F B F B 0 0 +∞ if 0 F B F B 0 0 if 0 F B F B 0
50 46 48 49 sylanbrc φ x A if 0 F B F B 0 0 +∞
51 0e0icopnf 0 0 +∞
52 51 a1i φ ¬ x A 0 0 +∞
53 50 52 ifclda φ if x A if 0 F B F B 0 0 0 +∞
54 43 53 eqeltrid φ if x A 0 F B F B 0 0 +∞
55 54 adantr φ x if x A 0 F B F B 0 0 +∞
56 ifan if x A 0 F B F B 0 = if x A if 0 F B F B 0 0
57 5 renegcld φ x A F B
58 ifcl F B 0 if 0 F B F B 0
59 57 44 58 sylancl φ x A if 0 F B F B 0
60 max1 0 F B 0 if 0 F B F B 0
61 44 57 60 sylancr φ x A 0 if 0 F B F B 0
62 elrege0 if 0 F B F B 0 0 +∞ if 0 F B F B 0 0 if 0 F B F B 0
63 59 61 62 sylanbrc φ x A if 0 F B F B 0 0 +∞
64 63 52 ifclda φ if x A if 0 F B F B 0 0 0 +∞
65 56 64 eqeltrid φ if x A 0 F B F B 0 0 +∞
66 65 adantr φ x if x A 0 F B F B 0 0 +∞
67 eqidd φ x if x A 0 F B F B 0 = x if x A 0 F B F B 0
68 eqidd φ x if x A 0 F B F B 0 = x if x A 0 F B F B 0
69 42 55 66 67 68 offval2 φ x if x A 0 F B F B 0 + f x if x A 0 F B F B 0 = x if x A 0 F B F B 0 + if x A 0 F B F B 0
70 43 56 oveq12i if x A 0 F B F B 0 + if x A 0 F B F B 0 = if x A if 0 F B F B 0 0 + if x A if 0 F B F B 0 0
71 max0add F B if 0 F B F B 0 + if 0 F B F B 0 = F B
72 5 71 syl φ x A if 0 F B F B 0 + if 0 F B F B 0 = F B
73 iftrue x A if x A if 0 F B F B 0 0 = if 0 F B F B 0
74 73 adantl φ x A if x A if 0 F B F B 0 0 = if 0 F B F B 0
75 iftrue x A if x A if 0 F B F B 0 0 = if 0 F B F B 0
76 75 adantl φ x A if x A if 0 F B F B 0 0 = if 0 F B F B 0
77 74 76 oveq12d φ x A if x A if 0 F B F B 0 0 + if x A if 0 F B F B 0 0 = if 0 F B F B 0 + if 0 F B F B 0
78 72 77 15 3eqtr4d φ x A if x A if 0 F B F B 0 0 + if x A if 0 F B F B 0 0 = if x A F B 0
79 78 ex φ x A if x A if 0 F B F B 0 0 + if x A if 0 F B F B 0 0 = if x A F B 0
80 00id 0 + 0 = 0
81 iffalse ¬ x A if x A if 0 F B F B 0 0 = 0
82 iffalse ¬ x A if x A if 0 F B F B 0 0 = 0
83 81 82 oveq12d ¬ x A if x A if 0 F B F B 0 0 + if x A if 0 F B F B 0 0 = 0 + 0
84 80 83 21 3eqtr4a ¬ x A if x A if 0 F B F B 0 0 + if x A if 0 F B F B 0 0 = if x A F B 0
85 79 84 pm2.61d1 φ if x A if 0 F B F B 0 0 + if x A if 0 F B F B 0 0 = if x A F B 0
86 70 85 eqtrid φ if x A 0 F B F B 0 + if x A 0 F B F B 0 = if x A F B 0
87 86 mpteq2dv φ x if x A 0 F B F B 0 + if x A 0 F B F B 0 = x if x A F B 0
88 69 87 eqtrd φ x if x A 0 F B F B 0 + f x if x A 0 F B F B 0 = x if x A F B 0
89 3 88 eqtr4id φ G = x if x A 0 F B F B 0 + f x if x A 0 F B F B 0
90 89 fveq2d φ 2 G = 2 x if x A 0 F B F B 0 + f x if x A 0 F B F B 0
91 54 adantr φ x A if x A 0 F B F B 0 0 +∞
92 43 81 eqtrid ¬ x A if x A 0 F B F B 0 = 0
93 20 92 syl φ x A if x A 0 F B F B 0 = 0
94 ibar x A 0 F B x A 0 F B
95 94 ifbid x A if 0 F B F B 0 = if x A 0 F B F B 0
96 95 mpteq2ia x A if 0 F B F B 0 = x A if x A 0 F B F B 0
97 5 8 mbfpos φ x A if 0 F B F B 0 MblFn
98 96 97 eqeltrrid φ x A if x A 0 F B F B 0 MblFn
99 11 13 91 93 98 mbfss φ x if x A 0 F B F B 0 MblFn
100 55 fmpttd φ x if x A 0 F B F B 0 : 0 +∞
101 7 simp2d φ 2 x if x A 0 F B F B 0
102 65 adantr φ x A if x A 0 F B F B 0 0 +∞
103 56 82 eqtrid ¬ x A if x A 0 F B F B 0 = 0
104 20 103 syl φ x A if x A 0 F B F B 0 = 0
105 ibar x A 0 F B x A 0 F B
106 105 ifbid x A if 0 F B F B 0 = if x A 0 F B F B 0
107 106 mpteq2ia x A if 0 F B F B 0 = x A if x A 0 F B F B 0
108 5 8 mbfneg φ x A F B MblFn
109 57 108 mbfpos φ x A if 0 F B F B 0 MblFn
110 107 109 eqeltrrid φ x A if x A 0 F B F B 0 MblFn
111 11 13 102 104 110 mbfss φ x if x A 0 F B F B 0 MblFn
112 66 fmpttd φ x if x A 0 F B F B 0 : 0 +∞
113 7 simp3d φ 2 x if x A 0 F B F B 0
114 99 100 101 111 112 113 itg2add φ 2 x if x A 0 F B F B 0 + f x if x A 0 F B F B 0 = 2 x if x A 0 F B F B 0 + 2 x if x A 0 F B F B 0
115 90 114 eqtrd φ 2 G = 2 x if x A 0 F B F B 0 + 2 x if x A 0 F B F B 0
116 101 113 readdcld φ 2 x if x A 0 F B F B 0 + 2 x if x A 0 F B F B 0
117 115 116 eqeltrd φ 2 G
118 40 117 jca φ G MblFn 2 G