Metamath Proof Explorer


Theorem cncfss

Description: The set of continuous functions is expanded when the codomain is expanded. (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Assertion cncfss BCCAcnBAcnC

Proof

Step Hyp Ref Expression
1 cncff f:AcnBf:AB
2 1 adantl BCCf:AcnBf:AB
3 simpll BCCf:AcnBBC
4 2 3 fssd BCCf:AcnBf:AC
5 cncfcdm Cf:AcnBf:AcnCf:AC
6 5 adantll BCCf:AcnBf:AcnCf:AC
7 4 6 mpbird BCCf:AcnBf:AcnC
8 7 ex BCCf:AcnBf:AcnC
9 8 ssrdv BCCAcnBAcnC