Metamath Proof Explorer


Theorem cncfcdm

Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion cncfcdm CF:AcnBF:AcnCF:AC

Proof

Step Hyp Ref Expression
1 cncfi F:AcnBxAy+z+wAwx<zFwFx<y
2 1 3expb F:AcnBxAy+z+wAwx<zFwFx<y
3 2 ralrimivva F:AcnBxAy+z+wAwx<zFwFx<y
4 3 adantl CF:AcnBxAy+z+wAwx<zFwFx<y
5 cncfrss F:AcnBA
6 simpl CF:AcnBC
7 elcncf2 ACF:AcnCF:ACxAy+z+wAwx<zFwFx<y
8 5 6 7 syl2an2 CF:AcnBF:AcnCF:ACxAy+z+wAwx<zFwFx<y
9 4 8 mpbiran2d CF:AcnBF:AcnCF:AC