Metamath Proof Explorer


Theorem cncfi

Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by Mario Carneiro, 25-Aug-2014)

Ref Expression
Assertion cncfi F:AcnBCAR+z+wAwC<zFwFC<R

Proof

Step Hyp Ref Expression
1 cncfrss F:AcnBA
2 cncfrss2 F:AcnBB
3 elcncf2 ABF:AcnBF:ABxAy+z+wAwx<zFwFx<y
4 1 2 3 syl2anc F:AcnBF:AcnBF:ABxAy+z+wAwx<zFwFx<y
5 4 ibi F:AcnBF:ABxAy+z+wAwx<zFwFx<y
6 5 simprd F:AcnBxAy+z+wAwx<zFwFx<y
7 oveq2 x=Cwx=wC
8 7 fveq2d x=Cwx=wC
9 8 breq1d x=Cwx<zwC<z
10 fveq2 x=CFx=FC
11 10 oveq2d x=CFwFx=FwFC
12 11 fveq2d x=CFwFx=FwFC
13 12 breq1d x=CFwFx<yFwFC<y
14 9 13 imbi12d x=Cwx<zFwFx<ywC<zFwFC<y
15 14 rexralbidv x=Cz+wAwx<zFwFx<yz+wAwC<zFwFC<y
16 breq2 y=RFwFC<yFwFC<R
17 16 imbi2d y=RwC<zFwFC<ywC<zFwFC<R
18 17 rexralbidv y=Rz+wAwC<zFwFC<yz+wAwC<zFwFC<R
19 15 18 rspc2v CAR+xAy+z+wAwx<zFwFx<yz+wAwC<zFwFC<R
20 6 19 mpan9 F:AcnBCAR+z+wAwC<zFwFC<R
21 20 3impb F:AcnBCAR+z+wAwC<zFwFC<R