Metamath Proof Explorer


Theorem cncfi

Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by Mario Carneiro, 25-Aug-2014)

Ref Expression
Assertion cncfi F : A cn B C A R + z + w A w C < z F w F C < R

Proof

Step Hyp Ref Expression
1 cncfrss F : A cn B A
2 cncfrss2 F : A cn B B
3 elcncf2 A B F : A cn B F : A B x A y + z + w A w x < z F w F x < y
4 1 2 3 syl2anc F : A cn B F : A cn B F : A B x A y + z + w A w x < z F w F x < y
5 4 ibi F : A cn B F : A B x A y + z + w A w x < z F w F x < y
6 5 simprd F : A cn B x A y + z + w A w x < z F w F x < y
7 oveq2 x = C w x = w C
8 7 fveq2d x = C w x = w C
9 8 breq1d x = C w x < z w C < z
10 fveq2 x = C F x = F C
11 10 oveq2d x = C F w F x = F w F C
12 11 fveq2d x = C F w F x = F w F C
13 12 breq1d x = C F w F x < y F w F C < y
14 9 13 imbi12d x = C w x < z F w F x < y w C < z F w F C < y
15 14 rexralbidv x = C z + w A w x < z F w F x < y z + w A w C < z F w F C < y
16 breq2 y = R F w F C < y F w F C < R
17 16 imbi2d y = R w C < z F w F C < y w C < z F w F C < R
18 17 rexralbidv y = R z + w A w C < z F w F C < y z + w A w C < z F w F C < R
19 15 18 rspc2v C A R + x A y + z + w A w x < z F w F x < y z + w A w C < z F w F C < R
20 6 19 mpan9 F : A cn B C A R + z + w A w C < z F w F C < R
21 20 3impb F : A cn B C A R + z + w A w C < z F w F C < R