Metamath Proof Explorer


Theorem elcncf1di

Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 26-Nov-2007)

Ref Expression
Hypotheses elcncf1d.1 φF:AB
elcncf1d.2 φxAy+Z+
elcncf1d.3 φxAwAy+xw<ZFxFw<y
Assertion elcncf1di φABF:AcnB

Proof

Step Hyp Ref Expression
1 elcncf1d.1 φF:AB
2 elcncf1d.2 φxAy+Z+
3 elcncf1d.3 φxAwAy+xw<ZFxFw<y
4 2 imp φxAy+Z+
5 an32 xAwAy+xAy+wA
6 5 bianass φxAwAy+φxAy+wA
7 3 imp φxAwAy+xw<ZFxFw<y
8 6 7 sylbir φxAy+wAxw<ZFxFw<y
9 8 ralrimiva φxAy+wAxw<ZFxFw<y
10 breq2 z=Zxw<zxw<Z
11 10 rspceaimv Z+wAxw<ZFxFw<yz+wAxw<zFxFw<y
12 4 9 11 syl2anc φxAy+z+wAxw<zFxFw<y
13 12 ralrimivva φxAy+z+wAxw<zFxFw<y
14 1 13 jca φF:ABxAy+z+wAxw<zFxFw<y
15 elcncf ABF:AcnBF:ABxAy+z+wAxw<zFxFw<y
16 14 15 syl5ibrcom φABF:AcnB