Metamath Proof Explorer


Theorem elcncf1ii

Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 26-Nov-2007)

Ref Expression
Hypotheses elcncf1i.1 F:AB
elcncf1i.2 xAy+Z+
elcncf1i.3 xAwAy+xw<ZFxFw<y
Assertion elcncf1ii ABF:AcnB

Proof

Step Hyp Ref Expression
1 elcncf1i.1 F:AB
2 elcncf1i.2 xAy+Z+
3 elcncf1i.3 xAwAy+xw<ZFxFw<y
4 1 a1i F:AB
5 2 a1i xAy+Z+
6 3 a1i xAwAy+xw<ZFxFw<y
7 4 5 6 elcncf1di ABF:AcnB
8 7 mptru ABF:AcnB