| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elcncf1i.1 |
|- F : A --> B |
| 2 |
|
elcncf1i.2 |
|- ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ ) |
| 3 |
|
elcncf1i.3 |
|- ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) |
| 4 |
1
|
a1i |
|- ( T. -> F : A --> B ) |
| 5 |
2
|
a1i |
|- ( T. -> ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ ) ) |
| 6 |
3
|
a1i |
|- ( T. -> ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) |
| 7 |
4 5 6
|
elcncf1di |
|- ( T. -> ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) ) ) |
| 8 |
7
|
mptru |
|- ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) ) |