Metamath Proof Explorer


Theorem elcncf2

Description: Version of elcncf with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion elcncf2 ABF:AcnBF:ABxAy+z+wAwx<zFwFx<y

Proof

Step Hyp Ref Expression
1 elcncf ABF:AcnBF:ABxAy+z+wAxw<zFxFw<y
2 simplll ABF:ABxAwAA
3 simprl ABF:ABxAwAxA
4 2 3 sseldd ABF:ABxAwAx
5 simprr ABF:ABxAwAwA
6 2 5 sseldd ABF:ABxAwAw
7 4 6 abssubd ABF:ABxAwAxw=wx
8 7 breq1d ABF:ABxAwAxw<zwx<z
9 simpllr ABF:ABxAwAB
10 simplr ABF:ABxAwAF:AB
11 10 3 ffvelcdmd ABF:ABxAwAFxB
12 9 11 sseldd ABF:ABxAwAFx
13 10 5 ffvelcdmd ABF:ABxAwAFwB
14 9 13 sseldd ABF:ABxAwAFw
15 12 14 abssubd ABF:ABxAwAFxFw=FwFx
16 15 breq1d ABF:ABxAwAFxFw<yFwFx<y
17 8 16 imbi12d ABF:ABxAwAxw<zFxFw<ywx<zFwFx<y
18 17 anassrs ABF:ABxAwAxw<zFxFw<ywx<zFwFx<y
19 18 ralbidva ABF:ABxAwAxw<zFxFw<ywAwx<zFwFx<y
20 19 rexbidv ABF:ABxAz+wAxw<zFxFw<yz+wAwx<zFwFx<y
21 20 ralbidv ABF:ABxAy+z+wAxw<zFxFw<yy+z+wAwx<zFwFx<y
22 21 ralbidva ABF:ABxAy+z+wAxw<zFxFw<yxAy+z+wAwx<zFwFx<y
23 22 pm5.32da ABF:ABxAy+z+wAxw<zFxFw<yF:ABxAy+z+wAwx<zFwFx<y
24 1 23 bitrd ABF:AcnBF:ABxAy+z+wAwx<zFwFx<y