| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|
| 2 |
|
cncff |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
simp2 |
|
| 5 |
|
fco |
|
| 6 |
3 4 5
|
syl2anc |
|
| 7 |
4
|
fdmd |
|
| 8 |
|
mbfdm |
|
| 9 |
8
|
3ad2ant1 |
|
| 10 |
7 9
|
eqeltrrd |
|
| 11 |
|
mblss |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
cnex |
|
| 14 |
|
reex |
|
| 15 |
|
elpm2r |
|
| 16 |
13 14 15
|
mpanl12 |
|
| 17 |
6 12 16
|
syl2anc |
|
| 18 |
|
coeq1 |
|
| 19 |
|
coass |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
20
|
cnveqd |
|
| 22 |
21
|
imaeq1d |
|
| 23 |
22
|
eleq1d |
|
| 24 |
|
cnvco |
|
| 25 |
24
|
imaeq1i |
|
| 26 |
|
imaco |
|
| 27 |
25 26
|
eqtri |
|
| 28 |
|
simplll |
|
| 29 |
|
simpllr |
|
| 30 |
|
cncfrss |
|
| 31 |
30
|
adantl |
|
| 32 |
|
simpr |
|
| 33 |
|
ax-resscn |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
|
tgioo4 |
|
| 37 |
34 35 36
|
cncfcn |
|
| 38 |
31 33 37
|
sylancl |
|
| 39 |
32 38
|
eleqtrd |
|
| 40 |
|
retopbas |
|
| 41 |
|
bastg |
|
| 42 |
40 41
|
ax-mp |
|
| 43 |
|
simplr |
|
| 44 |
42 43
|
sselid |
|
| 45 |
|
cnima |
|
| 46 |
39 44 45
|
syl2anc |
|
| 47 |
34 35
|
mbfimaopn2 |
|
| 48 |
28 29 31 46 47
|
syl31anc |
|
| 49 |
27 48
|
eqeltrid |
|
| 50 |
49
|
ralrimiva |
|
| 51 |
50
|
3adantl3 |
|
| 52 |
|
recncf |
|
| 53 |
52
|
a1i |
|
| 54 |
1 53
|
cncfco |
|
| 55 |
54
|
adantr |
|
| 56 |
23 51 55
|
rspcdva |
|
| 57 |
|
coeq1 |
|
| 58 |
|
coass |
|
| 59 |
57 58
|
eqtrdi |
|
| 60 |
59
|
cnveqd |
|
| 61 |
60
|
imaeq1d |
|
| 62 |
61
|
eleq1d |
|
| 63 |
|
imcncf |
|
| 64 |
63
|
a1i |
|
| 65 |
1 64
|
cncfco |
|
| 66 |
65
|
adantr |
|
| 67 |
62 51 66
|
rspcdva |
|
| 68 |
56 67
|
jca |
|
| 69 |
68
|
ralrimiva |
|
| 70 |
|
ismbf1 |
|
| 71 |
17 69 70
|
sylanbrc |
|