Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mbfimaopn.1 | |
|
mbfimaopn2.2 | |
||
Assertion | mbfimaopn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfimaopn.1 | |
|
2 | mbfimaopn2.2 | |
|
3 | 2 | eleq2i | |
4 | 1 | cnfldtop | |
5 | simp3 | |
|
6 | cnex | |
|
7 | ssexg | |
|
8 | 5 6 7 | sylancl | |
9 | elrest | |
|
10 | 4 8 9 | sylancr | |
11 | 3 10 | bitrid | |
12 | simpl2 | |
|
13 | ffun | |
|
14 | inpreima | |
|
15 | 12 13 14 | 3syl | |
16 | 1 | mbfimaopn | |
17 | 16 | 3ad2antl1 | |
18 | fimacnv | |
|
19 | fdm | |
|
20 | 18 19 | eqtr4d | |
21 | 12 20 | syl | |
22 | simpl1 | |
|
23 | mbfdm | |
|
24 | 22 23 | syl | |
25 | 21 24 | eqeltrd | |
26 | inmbl | |
|
27 | 17 25 26 | syl2anc | |
28 | 15 27 | eqeltrd | |
29 | imaeq2 | |
|
30 | 29 | eleq1d | |
31 | 28 30 | syl5ibrcom | |
32 | 31 | rexlimdva | |
33 | 11 32 | sylbid | |
34 | 33 | imp | |