Metamath Proof Explorer


Theorem mbfimaopn2

Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses mbfimaopn.1 J=TopOpenfld
mbfimaopn2.2 K=J𝑡B
Assertion mbfimaopn2 FMblFnF:ABBCKF-1Cdomvol

Proof

Step Hyp Ref Expression
1 mbfimaopn.1 J=TopOpenfld
2 mbfimaopn2.2 K=J𝑡B
3 2 eleq2i CKCJ𝑡B
4 1 cnfldtop JTop
5 simp3 FMblFnF:ABBB
6 cnex V
7 ssexg BVBV
8 5 6 7 sylancl FMblFnF:ABBBV
9 elrest JTopBVCJ𝑡BuJC=uB
10 4 8 9 sylancr FMblFnF:ABBCJ𝑡BuJC=uB
11 3 10 bitrid FMblFnF:ABBCKuJC=uB
12 simpl2 FMblFnF:ABBuJF:AB
13 ffun F:ABFunF
14 inpreima FunFF-1uB=F-1uF-1B
15 12 13 14 3syl FMblFnF:ABBuJF-1uB=F-1uF-1B
16 1 mbfimaopn FMblFnuJF-1udomvol
17 16 3ad2antl1 FMblFnF:ABBuJF-1udomvol
18 fimacnv F:ABF-1B=A
19 fdm F:ABdomF=A
20 18 19 eqtr4d F:ABF-1B=domF
21 12 20 syl FMblFnF:ABBuJF-1B=domF
22 simpl1 FMblFnF:ABBuJFMblFn
23 mbfdm FMblFndomFdomvol
24 22 23 syl FMblFnF:ABBuJdomFdomvol
25 21 24 eqeltrd FMblFnF:ABBuJF-1Bdomvol
26 inmbl F-1udomvolF-1BdomvolF-1uF-1Bdomvol
27 17 25 26 syl2anc FMblFnF:ABBuJF-1uF-1Bdomvol
28 15 27 eqeltrd FMblFnF:ABBuJF-1uBdomvol
29 imaeq2 C=uBF-1C=F-1uB
30 29 eleq1d C=uBF-1CdomvolF-1uBdomvol
31 28 30 syl5ibrcom FMblFnF:ABBuJC=uBF-1Cdomvol
32 31 rexlimdva FMblFnF:ABBuJC=uBF-1Cdomvol
33 11 32 sylbid FMblFnF:ABBCKF-1Cdomvol
34 33 imp FMblFnF:ABBCKF-1Cdomvol