| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfimaopn.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
mbfimaopn2.2 |
⊢ 𝐾 = ( 𝐽 ↾t 𝐵 ) |
| 3 |
2
|
eleq2i |
⊢ ( 𝐶 ∈ 𝐾 ↔ 𝐶 ∈ ( 𝐽 ↾t 𝐵 ) ) |
| 4 |
1
|
cnfldtop |
⊢ 𝐽 ∈ Top |
| 5 |
|
simp3 |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → 𝐵 ⊆ ℂ ) |
| 6 |
|
cnex |
⊢ ℂ ∈ V |
| 7 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ ℂ ∧ ℂ ∈ V ) → 𝐵 ∈ V ) |
| 8 |
5 6 7
|
sylancl |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → 𝐵 ∈ V ) |
| 9 |
|
elrest |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ∈ V ) → ( 𝐶 ∈ ( 𝐽 ↾t 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐽 𝐶 = ( 𝑢 ∩ 𝐵 ) ) ) |
| 10 |
4 8 9
|
sylancr |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( 𝐶 ∈ ( 𝐽 ↾t 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐽 𝐶 = ( 𝑢 ∩ 𝐵 ) ) ) |
| 11 |
3 10
|
bitrid |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( 𝐶 ∈ 𝐾 ↔ ∃ 𝑢 ∈ 𝐽 𝐶 = ( 𝑢 ∩ 𝐵 ) ) ) |
| 12 |
|
simpl2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 13 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) |
| 14 |
|
inpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 15 |
12 13 14
|
3syl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 16 |
1
|
mbfimaopn |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝑢 ) ∈ dom vol ) |
| 17 |
16
|
3ad2antl1 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝑢 ) ∈ dom vol ) |
| 18 |
|
fimacnv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐹 “ 𝐵 ) = 𝐴 ) |
| 19 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) |
| 20 |
18 19
|
eqtr4d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐹 “ 𝐵 ) = dom 𝐹 ) |
| 21 |
12 20
|
syl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝐵 ) = dom 𝐹 ) |
| 22 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → 𝐹 ∈ MblFn ) |
| 23 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → dom 𝐹 ∈ dom vol ) |
| 25 |
21 24
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝐵 ) ∈ dom vol ) |
| 26 |
|
inmbl |
⊢ ( ( ( ◡ 𝐹 “ 𝑢 ) ∈ dom vol ∧ ( ◡ 𝐹 “ 𝐵 ) ∈ dom vol ) → ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ∈ dom vol ) |
| 27 |
17 25 26
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ∈ dom vol ) |
| 28 |
15 27
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) ∈ dom vol ) |
| 29 |
|
imaeq2 |
⊢ ( 𝐶 = ( 𝑢 ∩ 𝐵 ) → ( ◡ 𝐹 “ 𝐶 ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝐶 = ( 𝑢 ∩ 𝐵 ) → ( ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) ∈ dom vol ) ) |
| 31 |
28 30
|
syl5ibrcom |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝐶 = ( 𝑢 ∩ 𝐵 ) → ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ) ) |
| 32 |
31
|
rexlimdva |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( ∃ 𝑢 ∈ 𝐽 𝐶 = ( 𝑢 ∩ 𝐵 ) → ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ) ) |
| 33 |
11 32
|
sylbid |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( 𝐶 ∈ 𝐾 → ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ) ) |
| 34 |
33
|
imp |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝐶 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ) |