Step |
Hyp |
Ref |
Expression |
1 |
|
mbfimaopn.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
oveq1 |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑤 ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( i · 𝑤 ) = ( i · 𝑦 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
5 |
2 4
|
cbvmpov |
⊢ ( 𝑡 ∈ ℝ , 𝑤 ∈ ℝ ↦ ( 𝑡 + ( i · 𝑤 ) ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) |
6 |
|
eqid |
⊢ ( (,) “ ( ℚ × ℚ ) ) = ( (,) “ ( ℚ × ℚ ) ) |
7 |
|
eqid |
⊢ ran ( 𝑥 ∈ ( (,) “ ( ℚ × ℚ ) ) , 𝑦 ∈ ( (,) “ ( ℚ × ℚ ) ) ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ ( (,) “ ( ℚ × ℚ ) ) , 𝑦 ∈ ( (,) “ ( ℚ × ℚ ) ) ↦ ( 𝑥 × 𝑦 ) ) |
8 |
1 5 6 7
|
mbfimaopnlem |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) |