| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) |
| 2 |
|
cncff |
⊢ ( 𝐺 ∈ ( 𝐵 –cn→ ℂ ) → 𝐺 : 𝐵 ⟶ ℂ ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐺 : 𝐵 ⟶ ℂ ) |
| 4 |
|
simp2 |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 5 |
|
fco |
⊢ ( ( 𝐺 : 𝐵 ⟶ ℂ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) |
| 7 |
4
|
fdmd |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → dom 𝐹 = 𝐴 ) |
| 8 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → dom 𝐹 ∈ dom vol ) |
| 10 |
7 9
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐴 ∈ dom vol ) |
| 11 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐴 ⊆ ℝ ) |
| 13 |
|
cnex |
⊢ ℂ ∈ V |
| 14 |
|
reex |
⊢ ℝ ∈ V |
| 15 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ℂ ↑pm ℝ ) ) |
| 16 |
13 14 15
|
mpanl12 |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ℂ ↑pm ℝ ) ) |
| 17 |
6 12 16
|
syl2anc |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ℂ ↑pm ℝ ) ) |
| 18 |
|
coeq1 |
⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ( 𝑔 ∘ 𝐹 ) = ( ( ℜ ∘ 𝐺 ) ∘ 𝐹 ) ) |
| 19 |
|
coass |
⊢ ( ( ℜ ∘ 𝐺 ) ∘ 𝐹 ) = ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) |
| 20 |
18 19
|
eqtrdi |
⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ( 𝑔 ∘ 𝐹 ) = ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 21 |
20
|
cnveqd |
⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ◡ ( 𝑔 ∘ 𝐹 ) = ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 22 |
21
|
imaeq1d |
⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) = ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ) |
| 23 |
22
|
eleq1d |
⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ( ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ↔ ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) |
| 24 |
|
cnvco |
⊢ ◡ ( 𝑔 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ ◡ 𝑔 ) |
| 25 |
24
|
imaeq1i |
⊢ ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) = ( ( ◡ 𝐹 ∘ ◡ 𝑔 ) “ 𝑥 ) |
| 26 |
|
imaco |
⊢ ( ( ◡ 𝐹 ∘ ◡ 𝑔 ) “ 𝑥 ) = ( ◡ 𝐹 “ ( ◡ 𝑔 “ 𝑥 ) ) |
| 27 |
25 26
|
eqtri |
⊢ ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) = ( ◡ 𝐹 “ ( ◡ 𝑔 “ 𝑥 ) ) |
| 28 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝐹 ∈ MblFn ) |
| 29 |
|
simpllr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 30 |
|
cncfrss |
⊢ ( 𝑔 ∈ ( 𝐵 –cn→ ℝ ) → 𝐵 ⊆ ℂ ) |
| 31 |
30
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝐵 ⊆ ℂ ) |
| 32 |
|
simpr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) |
| 33 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 34 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 35 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) |
| 36 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 37 |
34 35 36
|
cncfcn |
⊢ ( ( 𝐵 ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝐵 –cn→ ℝ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 38 |
31 33 37
|
sylancl |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → ( 𝐵 –cn→ ℝ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 39 |
32 38
|
eleqtrd |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝑔 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 40 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
| 41 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
| 42 |
40 41
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 43 |
|
simplr |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝑥 ∈ ran (,) ) |
| 44 |
42 43
|
sselid |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝑥 ∈ ( topGen ‘ ran (,) ) ) |
| 45 |
|
cnima |
⊢ ( ( 𝑔 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) Cn ( topGen ‘ ran (,) ) ) ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( ◡ 𝑔 “ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) ) |
| 46 |
39 44 45
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → ( ◡ 𝑔 “ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) ) |
| 47 |
34 35
|
mbfimaopn2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ ( ◡ 𝑔 “ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) ) → ( ◡ 𝐹 “ ( ◡ 𝑔 “ 𝑥 ) ) ∈ dom vol ) |
| 48 |
28 29 31 46 47
|
syl31anc |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → ( ◡ 𝐹 “ ( ◡ 𝑔 “ 𝑥 ) ) ∈ dom vol ) |
| 49 |
27 48
|
eqeltrid |
⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 50 |
49
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) → ∀ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 51 |
50
|
3adantl3 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ∀ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 52 |
|
recncf |
⊢ ℜ ∈ ( ℂ –cn→ ℝ ) |
| 53 |
52
|
a1i |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ℜ ∈ ( ℂ –cn→ ℝ ) ) |
| 54 |
1 53
|
cncfco |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( ℜ ∘ 𝐺 ) ∈ ( 𝐵 –cn→ ℝ ) ) |
| 55 |
54
|
adantr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℜ ∘ 𝐺 ) ∈ ( 𝐵 –cn→ ℝ ) ) |
| 56 |
23 51 55
|
rspcdva |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) |
| 57 |
|
coeq1 |
⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ( 𝑔 ∘ 𝐹 ) = ( ( ℑ ∘ 𝐺 ) ∘ 𝐹 ) ) |
| 58 |
|
coass |
⊢ ( ( ℑ ∘ 𝐺 ) ∘ 𝐹 ) = ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) |
| 59 |
57 58
|
eqtrdi |
⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ( 𝑔 ∘ 𝐹 ) = ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 60 |
59
|
cnveqd |
⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ◡ ( 𝑔 ∘ 𝐹 ) = ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 61 |
60
|
imaeq1d |
⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) = ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ( ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ↔ ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) |
| 63 |
|
imcncf |
⊢ ℑ ∈ ( ℂ –cn→ ℝ ) |
| 64 |
63
|
a1i |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ℑ ∈ ( ℂ –cn→ ℝ ) ) |
| 65 |
1 64
|
cncfco |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( ℑ ∘ 𝐺 ) ∈ ( 𝐵 –cn→ ℝ ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℑ ∘ 𝐺 ) ∈ ( 𝐵 –cn→ ℝ ) ) |
| 67 |
62 51 66
|
rspcdva |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) |
| 68 |
56 67
|
jca |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) |
| 69 |
68
|
ralrimiva |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) |
| 70 |
|
ismbf1 |
⊢ ( ( 𝐺 ∘ 𝐹 ) ∈ MblFn ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) ) |
| 71 |
17 69 70
|
sylanbrc |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( 𝐺 ∘ 𝐹 ) ∈ MblFn ) |