| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfco.4 |
|
| 2 |
|
cncfco.5 |
|
| 3 |
|
cncff |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
cncff |
|
| 6 |
1 5
|
syl |
|
| 7 |
|
fco |
|
| 8 |
4 6 7
|
syl2anc |
|
| 9 |
2
|
adantr |
|
| 10 |
6
|
adantr |
|
| 11 |
|
simprl |
|
| 12 |
10 11
|
ffvelcdmd |
|
| 13 |
|
simprr |
|
| 14 |
|
cncfi |
|
| 15 |
9 12 13 14
|
syl3anc |
|
| 16 |
1
|
ad2antrr |
|
| 17 |
|
simplrl |
|
| 18 |
|
simpr |
|
| 19 |
|
cncfi |
|
| 20 |
16 17 18 19
|
syl3anc |
|
| 21 |
6
|
ad3antrrr |
|
| 22 |
|
simprr |
|
| 23 |
21 22
|
ffvelcdmd |
|
| 24 |
|
fvoveq1 |
|
| 25 |
24
|
breq1d |
|
| 26 |
25
|
imbrov2fvoveq |
|
| 27 |
26
|
rspcv |
|
| 28 |
23 27
|
syl |
|
| 29 |
|
fvco3 |
|
| 30 |
21 22 29
|
syl2anc |
|
| 31 |
17
|
adantr |
|
| 32 |
|
fvco3 |
|
| 33 |
21 31 32
|
syl2anc |
|
| 34 |
30 33
|
oveq12d |
|
| 35 |
34
|
fveq2d |
|
| 36 |
35
|
breq1d |
|
| 37 |
36
|
imbi2d |
|
| 38 |
28 37
|
sylibrd |
|
| 39 |
38
|
imp |
|
| 40 |
39
|
an32s |
|
| 41 |
40
|
imim2d |
|
| 42 |
41
|
anassrs |
|
| 43 |
42
|
ralimdva |
|
| 44 |
43
|
reximdva |
|
| 45 |
44
|
ex |
|
| 46 |
20 45
|
mpid |
|
| 47 |
46
|
rexlimdva |
|
| 48 |
15 47
|
mpd |
|
| 49 |
48
|
ralrimivva |
|
| 50 |
|
cncfrss |
|
| 51 |
1 50
|
syl |
|
| 52 |
|
cncfrss2 |
|
| 53 |
2 52
|
syl |
|
| 54 |
|
elcncf2 |
|
| 55 |
51 53 54
|
syl2anc |
|
| 56 |
8 49 55
|
mpbir2and |
|