Metamath Proof Explorer


Theorem cniccbdd

Description: A continuous function on a closed interval is bounded. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Assertion cniccbdd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 ral0 𝑦 ∈ ∅ ( abs ‘ ( 𝐹𝑦 ) ) ≤ 0
3 simp1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐴 ∈ ℝ )
4 3 rexrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐴 ∈ ℝ* )
5 simp2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐵 ∈ ℝ )
6 5 rexrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐵 ∈ ℝ* )
7 icc0 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )
8 4 6 7 syl2anc ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )
9 8 biimpar ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ )
10 9 raleqdv ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 0 ↔ ∀ 𝑦 ∈ ∅ ( abs ‘ ( 𝐹𝑦 ) ) ≤ 0 ) )
11 2 10 mpbiri ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 0 )
12 brralrspcev ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 0 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
13 1 11 12 sylancr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
14 3 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴𝐵 ) → 𝐴 ∈ ℝ )
15 5 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴𝐵 ) → 𝐵 ∈ ℝ )
16 simpr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴𝐵 ) → 𝐴𝐵 )
17 simp3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
18 abscncf abs ∈ ( ℂ –cn→ ℝ )
19 18 a1i ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → abs ∈ ( ℂ –cn→ ℝ ) )
20 17 19 cncfco ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
21 20 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴𝐵 ) → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
22 14 15 16 21 evthicc ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴𝐵 ) → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) )
23 22 simpld ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴𝐵 ) → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) )
24 cncff ( ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( abs ∘ 𝐹 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
25 20 24 syl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( abs ∘ 𝐹 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
26 25 ffvelrnda ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ∈ ℝ )
27 cncff ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
28 17 27 syl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
29 28 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
30 fvco3 ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹𝑦 ) ) )
31 29 30 sylan ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹𝑦 ) ) )
32 31 breq1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ↔ ( abs ‘ ( 𝐹𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) )
33 32 ralbidva ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) )
34 33 biimpd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) )
35 brralrspcev ( ( ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
36 26 34 35 syl6an ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 ) )
37 36 rexlimdva ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 ) )
38 37 imp ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
39 23 38 syldan ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
40 13 39 5 3 ltlecasei ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )