Metamath Proof Explorer


Theorem icc0

Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014)

Ref Expression
Assertion icc0 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 iccval ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 [,] 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴𝑥𝑥𝐵 ) } )
2 1 eqeq1d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ { 𝑥 ∈ ℝ* ∣ ( 𝐴𝑥𝑥𝐵 ) } = ∅ ) )
3 df-ne ( { 𝑥 ∈ ℝ* ∣ ( 𝐴𝑥𝑥𝐵 ) } ≠ ∅ ↔ ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴𝑥𝑥𝐵 ) } = ∅ )
4 rabn0 ( { 𝑥 ∈ ℝ* ∣ ( 𝐴𝑥𝑥𝐵 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴𝑥𝑥𝐵 ) )
5 3 4 bitr3i ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴𝑥𝑥𝐵 ) } = ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴𝑥𝑥𝐵 ) )
6 xrletr ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴𝑥𝑥𝐵 ) → 𝐴𝐵 ) )
7 6 3com23 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ* ) → ( ( 𝐴𝑥𝑥𝐵 ) → 𝐴𝐵 ) )
8 7 3expa ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴𝑥𝑥𝐵 ) → 𝐴𝐵 ) )
9 8 rexlimdva ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴𝑥𝑥𝐵 ) → 𝐴𝐵 ) )
10 simp2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐵 ∈ ℝ* )
11 simp3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴𝐵 )
12 xrleid ( 𝐵 ∈ ℝ*𝐵𝐵 )
13 12 3ad2ant2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐵𝐵 )
14 breq2 ( 𝑥 = 𝐵 → ( 𝐴𝑥𝐴𝐵 ) )
15 breq1 ( 𝑥 = 𝐵 → ( 𝑥𝐵𝐵𝐵 ) )
16 14 15 anbi12d ( 𝑥 = 𝐵 → ( ( 𝐴𝑥𝑥𝐵 ) ↔ ( 𝐴𝐵𝐵𝐵 ) ) )
17 16 rspcev ( ( 𝐵 ∈ ℝ* ∧ ( 𝐴𝐵𝐵𝐵 ) ) → ∃ 𝑥 ∈ ℝ* ( 𝐴𝑥𝑥𝐵 ) )
18 10 11 13 17 syl12anc ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ∃ 𝑥 ∈ ℝ* ( 𝐴𝑥𝑥𝐵 ) )
19 18 3expia ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ ℝ* ( 𝐴𝑥𝑥𝐵 ) ) )
20 9 19 impbid ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴𝑥𝑥𝐵 ) ↔ 𝐴𝐵 ) )
21 5 20 syl5bb ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴𝑥𝑥𝐵 ) } = ∅ ↔ 𝐴𝐵 ) )
22 xrlenlt ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )
23 21 22 bitrd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴𝑥𝑥𝐵 ) } = ∅ ↔ ¬ 𝐵 < 𝐴 ) )
24 23 con4bid ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴𝑥𝑥𝐵 ) } = ∅ ↔ 𝐵 < 𝐴 ) )
25 2 24 bitrd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )