Step |
Hyp |
Ref |
Expression |
1 |
|
iccval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,] 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } ) |
2 |
1
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ) ) |
3 |
|
df-ne |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } ≠ ∅ ↔ ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ) |
4 |
|
rabn0 |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
5 |
3 4
|
bitr3i |
⊢ ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
6 |
|
xrletr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
7 |
6
|
3com23 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
8 |
7
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
9 |
8
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
10 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
11 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
12 |
|
xrleid |
⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵 ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ≤ 𝐵 ) |
14 |
|
breq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵 ) ) |
15 |
|
breq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ≤ 𝐵 ↔ 𝐵 ≤ 𝐵 ) ) |
16 |
14 15
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
17 |
16
|
rspcev |
⊢ ( ( 𝐵 ∈ ℝ* ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
18 |
10 11 13 17
|
syl12anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
19 |
18
|
3expia |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
20 |
9 19
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ↔ 𝐴 ≤ 𝐵 ) ) |
21 |
5 20
|
syl5bb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ↔ 𝐴 ≤ 𝐵 ) ) |
22 |
|
xrlenlt |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
23 |
21 22
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ↔ ¬ 𝐵 < 𝐴 ) ) |
24 |
23
|
con4bid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ↔ 𝐵 < 𝐴 ) ) |
25 |
2 24
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |