Step |
Hyp |
Ref |
Expression |
1 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) → 𝑥 < +∞ ) |
3 |
2
|
pm4.71i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ 𝑥 < +∞ ) ) |
4 |
|
df-3an |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞ ) ↔ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ 𝑥 < +∞ ) ) |
5 |
3 4
|
bitr4i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞ ) ) |
6 |
|
elrp |
⊢ ( 𝑥 ∈ ℝ+ ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
7 |
|
0xr |
⊢ 0 ∈ ℝ* |
8 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
9 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 0 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞ ) ) ) |
10 |
7 8 9
|
mp2an |
⊢ ( 𝑥 ∈ ( 0 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞ ) ) |
11 |
5 6 10
|
3bitr4i |
⊢ ( 𝑥 ∈ ℝ+ ↔ 𝑥 ∈ ( 0 (,) +∞ ) ) |
12 |
11
|
eqriv |
⊢ ℝ+ = ( 0 (,) +∞ ) |