Metamath Proof Explorer


Theorem dfrp2

Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020)

Ref Expression
Assertion dfrp2 + = ( 0 (,) +∞ )

Proof

Step Hyp Ref Expression
1 ltpnf ( 𝑥 ∈ ℝ → 𝑥 < +∞ )
2 1 adantr ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) → 𝑥 < +∞ )
3 2 pm4.71i ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ 𝑥 < +∞ ) )
4 df-3an ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞ ) ↔ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ 𝑥 < +∞ ) )
5 3 4 bitr4i ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞ ) )
6 elrp ( 𝑥 ∈ ℝ+ ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) )
7 0xr 0 ∈ ℝ*
8 pnfxr +∞ ∈ ℝ*
9 elioo2 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 0 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞ ) ) )
10 7 8 9 mp2an ( 𝑥 ∈ ( 0 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞ ) )
11 5 6 10 3bitr4i ( 𝑥 ∈ ℝ+𝑥 ∈ ( 0 (,) +∞ ) )
12 11 eqriv + = ( 0 (,) +∞ )