Metamath Proof Explorer


Theorem dfrp2

Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020)

Ref Expression
Assertion dfrp2 + = 0 +∞

Proof

Step Hyp Ref Expression
1 ltpnf x x < +∞
2 1 adantr x 0 < x x < +∞
3 2 pm4.71i x 0 < x x 0 < x x < +∞
4 df-3an x 0 < x x < +∞ x 0 < x x < +∞
5 3 4 bitr4i x 0 < x x 0 < x x < +∞
6 elrp x + x 0 < x
7 0xr 0 *
8 pnfxr +∞ *
9 elioo2 0 * +∞ * x 0 +∞ x 0 < x x < +∞
10 7 8 9 mp2an x 0 +∞ x 0 < x x < +∞
11 5 6 10 3bitr4i x + x 0 +∞
12 11 eqriv + = 0 +∞