Metamath Proof Explorer


Theorem dfrp2

Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020)

Ref Expression
Assertion dfrp2 +=0+∞

Proof

Step Hyp Ref Expression
1 ltpnf xx<+∞
2 1 adantr x0<xx<+∞
3 2 pm4.71i x0<xx0<xx<+∞
4 df-3an x0<xx<+∞x0<xx<+∞
5 3 4 bitr4i x0<xx0<xx<+∞
6 elrp x+x0<x
7 0xr 0*
8 pnfxr +∞*
9 elioo2 0*+∞*x0+∞x0<xx<+∞
10 7 8 9 mp2an x0+∞x0<xx<+∞
11 5 6 10 3bitr4i x+x0+∞
12 11 eqriv +=0+∞