Metamath Proof Explorer


Theorem icc0

Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014)

Ref Expression
Assertion icc0 A*B*AB=B<A

Proof

Step Hyp Ref Expression
1 iccval A*B*AB=x*|AxxB
2 1 eqeq1d A*B*AB=x*|AxxB=
3 df-ne x*|AxxB¬x*|AxxB=
4 rabn0 x*|AxxBx*AxxB
5 3 4 bitr3i ¬x*|AxxB=x*AxxB
6 xrletr A*x*B*AxxBAB
7 6 3com23 A*B*x*AxxBAB
8 7 3expa A*B*x*AxxBAB
9 8 rexlimdva A*B*x*AxxBAB
10 simp2 A*B*ABB*
11 simp3 A*B*ABAB
12 xrleid B*BB
13 12 3ad2ant2 A*B*ABBB
14 breq2 x=BAxAB
15 breq1 x=BxBBB
16 14 15 anbi12d x=BAxxBABBB
17 16 rspcev B*ABBBx*AxxB
18 10 11 13 17 syl12anc A*B*ABx*AxxB
19 18 3expia A*B*ABx*AxxB
20 9 19 impbid A*B*x*AxxBAB
21 5 20 bitrid A*B*¬x*|AxxB=AB
22 xrlenlt A*B*AB¬B<A
23 21 22 bitrd A*B*¬x*|AxxB=¬B<A
24 23 con4bid A*B*x*|AxxB=B<A
25 2 24 bitrd A*B*AB=B<A