Metamath Proof Explorer


Theorem icc0

Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014)

Ref Expression
Assertion icc0 A * B * A B = B < A

Proof

Step Hyp Ref Expression
1 iccval A * B * A B = x * | A x x B
2 1 eqeq1d A * B * A B = x * | A x x B =
3 df-ne x * | A x x B ¬ x * | A x x B =
4 rabn0 x * | A x x B x * A x x B
5 3 4 bitr3i ¬ x * | A x x B = x * A x x B
6 xrletr A * x * B * A x x B A B
7 6 3com23 A * B * x * A x x B A B
8 7 3expa A * B * x * A x x B A B
9 8 rexlimdva A * B * x * A x x B A B
10 simp2 A * B * A B B *
11 simp3 A * B * A B A B
12 xrleid B * B B
13 12 3ad2ant2 A * B * A B B B
14 breq2 x = B A x A B
15 breq1 x = B x B B B
16 14 15 anbi12d x = B A x x B A B B B
17 16 rspcev B * A B B B x * A x x B
18 10 11 13 17 syl12anc A * B * A B x * A x x B
19 18 3expia A * B * A B x * A x x B
20 9 19 impbid A * B * x * A x x B A B
21 5 20 syl5bb A * B * ¬ x * | A x x B = A B
22 xrlenlt A * B * A B ¬ B < A
23 21 22 bitrd A * B * ¬ x * | A x x B = ¬ B < A
24 23 con4bid A * B * x * | A x x B = B < A
25 2 24 bitrd A * B * A B = B < A