| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgpowd.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
itgpowd.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
itgpowd.3 |
|- ( ph -> A <_ B ) |
| 4 |
|
itgpowd.4 |
|- ( ph -> N e. NN0 ) |
| 5 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
| 6 |
4 5
|
syl |
|- ( ph -> ( N + 1 ) e. NN ) |
| 7 |
6
|
nncnd |
|- ( ph -> ( N + 1 ) e. CC ) |
| 8 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 9 |
1 2 8
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 10 |
|
ax-resscn |
|- RR C_ CC |
| 11 |
9 10
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 12 |
11
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> N e. NN0 ) |
| 14 |
12 13
|
expcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x ^ N ) e. CC ) |
| 15 |
11
|
resmptd |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( x ^ N ) ) ) |
| 16 |
|
expcncf |
|- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
| 17 |
4 16
|
syl |
|- ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
| 18 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( x ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
| 19 |
11 17 18
|
sylc |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 20 |
15 19
|
eqeltrrd |
|- ( ph -> ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 21 |
|
cnicciblnc |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. L^1 ) |
| 22 |
1 2 20 21
|
syl3anc |
|- ( ph -> ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. L^1 ) |
| 23 |
14 22
|
itgcl |
|- ( ph -> S. ( A [,] B ) ( x ^ N ) _d x e. CC ) |
| 24 |
6
|
nnne0d |
|- ( ph -> ( N + 1 ) =/= 0 ) |
| 25 |
7 14 22
|
itgmulc2 |
|- ( ph -> ( ( N + 1 ) x. S. ( A [,] B ) ( x ^ N ) _d x ) = S. ( A [,] B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x ) |
| 26 |
|
eqidd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) = ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 27 |
|
oveq1 |
|- ( t = x -> ( t ^ N ) = ( x ^ N ) ) |
| 28 |
27
|
oveq2d |
|- ( t = x -> ( ( N + 1 ) x. ( t ^ N ) ) = ( ( N + 1 ) x. ( x ^ N ) ) ) |
| 29 |
28
|
adantl |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ t = x ) -> ( ( N + 1 ) x. ( t ^ N ) ) = ( ( N + 1 ) x. ( x ^ N ) ) ) |
| 30 |
|
simpr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
| 31 |
7
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( N + 1 ) e. CC ) |
| 32 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 33 |
32
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 34 |
33
|
sselda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) |
| 35 |
34 14
|
syldan |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x ^ N ) e. CC ) |
| 36 |
31 35
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N + 1 ) x. ( x ^ N ) ) e. CC ) |
| 37 |
26 29 30 36
|
fvmptd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) = ( ( N + 1 ) x. ( x ^ N ) ) ) |
| 38 |
37
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x = S. ( A (,) B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x ) |
| 39 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 40 |
39
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 41 |
10
|
a1i |
|- ( ph -> RR C_ CC ) |
| 42 |
41
|
sselda |
|- ( ( ph /\ t e. RR ) -> t e. CC ) |
| 43 |
|
1nn0 |
|- 1 e. NN0 |
| 44 |
43
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 45 |
4 44
|
nn0addcld |
|- ( ph -> ( N + 1 ) e. NN0 ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ t e. RR ) -> ( N + 1 ) e. NN0 ) |
| 47 |
42 46
|
expcld |
|- ( ( ph /\ t e. RR ) -> ( t ^ ( N + 1 ) ) e. CC ) |
| 48 |
4
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ t e. RR ) -> N e. CC ) |
| 50 |
|
1cnd |
|- ( ( ph /\ t e. RR ) -> 1 e. CC ) |
| 51 |
49 50
|
addcld |
|- ( ( ph /\ t e. RR ) -> ( N + 1 ) e. CC ) |
| 52 |
4
|
adantr |
|- ( ( ph /\ t e. RR ) -> N e. NN0 ) |
| 53 |
42 52
|
expcld |
|- ( ( ph /\ t e. RR ) -> ( t ^ N ) e. CC ) |
| 54 |
51 53
|
mulcld |
|- ( ( ph /\ t e. RR ) -> ( ( N + 1 ) x. ( t ^ N ) ) e. CC ) |
| 55 |
|
simpr |
|- ( ( ph /\ t e. CC ) -> t e. CC ) |
| 56 |
45
|
adantr |
|- ( ( ph /\ t e. CC ) -> ( N + 1 ) e. NN0 ) |
| 57 |
55 56
|
expcld |
|- ( ( ph /\ t e. CC ) -> ( t ^ ( N + 1 ) ) e. CC ) |
| 58 |
57
|
fmpttd |
|- ( ph -> ( t e. CC |-> ( t ^ ( N + 1 ) ) ) : CC --> CC ) |
| 59 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 60 |
7
|
adantr |
|- ( ( ph /\ t e. CC ) -> ( N + 1 ) e. CC ) |
| 61 |
4
|
adantr |
|- ( ( ph /\ t e. CC ) -> N e. NN0 ) |
| 62 |
55 61
|
expcld |
|- ( ( ph /\ t e. CC ) -> ( t ^ N ) e. CC ) |
| 63 |
60 62
|
mulcld |
|- ( ( ph /\ t e. CC ) -> ( ( N + 1 ) x. ( t ^ N ) ) e. CC ) |
| 64 |
63
|
fmpttd |
|- ( ph -> ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) : CC --> CC ) |
| 65 |
|
dvexp |
|- ( ( N + 1 ) e. NN -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) ) ) |
| 66 |
6 65
|
syl |
|- ( ph -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) ) ) |
| 67 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 68 |
48 67
|
pncand |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 69 |
68
|
oveq2d |
|- ( ph -> ( t ^ ( ( N + 1 ) - 1 ) ) = ( t ^ N ) ) |
| 70 |
69
|
oveq2d |
|- ( ph -> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) = ( ( N + 1 ) x. ( t ^ N ) ) ) |
| 71 |
70
|
mpteq2dv |
|- ( ph -> ( t e. CC |-> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 72 |
66 71
|
eqtrd |
|- ( ph -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 73 |
72
|
feq1d |
|- ( ph -> ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) : CC --> CC <-> ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) : CC --> CC ) ) |
| 74 |
64 73
|
mpbird |
|- ( ph -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) : CC --> CC ) |
| 75 |
74
|
fdmd |
|- ( ph -> dom ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = CC ) |
| 76 |
10 75
|
sseqtrrid |
|- ( ph -> RR C_ dom ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) ) |
| 77 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ ( t e. CC |-> ( t ^ ( N + 1 ) ) ) : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) ) ) -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) |` RR ) ) |
| 78 |
40 58 59 76 77
|
syl22anc |
|- ( ph -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) |` RR ) ) |
| 79 |
72
|
reseq1d |
|- ( ph -> ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) |` RR ) = ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) ) |
| 80 |
78 79
|
eqtrd |
|- ( ph -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) ) |
| 81 |
|
resmpt |
|- ( RR C_ CC -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) = ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) |
| 82 |
10 81
|
mp1i |
|- ( ph -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) = ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) |
| 83 |
82
|
oveq2d |
|- ( ph -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( RR _D ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) ) |
| 84 |
|
resmpt |
|- ( RR C_ CC -> ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) = ( t e. RR |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 85 |
10 84
|
mp1i |
|- ( ph -> ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) = ( t e. RR |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 86 |
80 83 85
|
3eqtr3d |
|- ( ph -> ( RR _D ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. RR |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 87 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 88 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 89 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 90 |
1 2 89
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 91 |
40 47 54 86 9 87 88 90
|
dvmptres2 |
|- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 92 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 93 |
92 10
|
sstri |
|- ( A (,) B ) C_ CC |
| 94 |
93
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
| 95 |
|
cncfmptc |
|- ( ( ( N + 1 ) e. CC /\ ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( t e. ( A (,) B ) |-> ( N + 1 ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 96 |
7 94 59 95
|
syl3anc |
|- ( ph -> ( t e. ( A (,) B ) |-> ( N + 1 ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 97 |
|
resmpt |
|- ( ( A (,) B ) C_ CC -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) = ( t e. ( A (,) B ) |-> ( t ^ N ) ) ) |
| 98 |
93 97
|
mp1i |
|- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) = ( t e. ( A (,) B ) |-> ( t ^ N ) ) ) |
| 99 |
|
expcncf |
|- ( N e. NN0 -> ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) ) |
| 100 |
4 99
|
syl |
|- ( ph -> ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) ) |
| 101 |
|
rescncf |
|- ( ( A (,) B ) C_ CC -> ( ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) ) |
| 102 |
94 100 101
|
sylc |
|- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 103 |
98 102
|
eqeltrrd |
|- ( ph -> ( t e. ( A (,) B ) |-> ( t ^ N ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 104 |
96 103
|
mulcncf |
|- ( ph -> ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 105 |
91 104
|
eqeltrd |
|- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 106 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
| 107 |
106
|
a1i |
|- ( ph -> ( A (,) B ) e. dom vol ) |
| 108 |
48
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> N e. CC ) |
| 109 |
|
1cnd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> 1 e. CC ) |
| 110 |
108 109
|
addcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( N + 1 ) e. CC ) |
| 111 |
11
|
sselda |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. CC ) |
| 112 |
4
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> N e. NN0 ) |
| 113 |
111 112
|
expcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t ^ N ) e. CC ) |
| 114 |
110 113
|
mulcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( ( N + 1 ) x. ( t ^ N ) ) e. CC ) |
| 115 |
|
cncfmptc |
|- ( ( ( N + 1 ) e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( t e. ( A [,] B ) |-> ( N + 1 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 116 |
7 11 59 115
|
syl3anc |
|- ( ph -> ( t e. ( A [,] B ) |-> ( N + 1 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 117 |
11
|
resmptd |
|- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A [,] B ) ) = ( t e. ( A [,] B ) |-> ( t ^ N ) ) ) |
| 118 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
| 119 |
11 100 118
|
sylc |
|- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 120 |
117 119
|
eqeltrrd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 121 |
116 120
|
mulcncf |
|- ( ph -> ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 122 |
|
cnicciblnc |
|- ( ( A e. RR /\ B e. RR /\ ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. L^1 ) |
| 123 |
1 2 121 122
|
syl3anc |
|- ( ph -> ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. L^1 ) |
| 124 |
33 107 114 123
|
iblss |
|- ( ph -> ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. L^1 ) |
| 125 |
91 124
|
eqeltrd |
|- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) e. L^1 ) |
| 126 |
11
|
resmptd |
|- ( ph -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` ( A [,] B ) ) = ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) |
| 127 |
|
expcncf |
|- ( ( N + 1 ) e. NN0 -> ( t e. CC |-> ( t ^ ( N + 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 128 |
45 127
|
syl |
|- ( ph -> ( t e. CC |-> ( t ^ ( N + 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 129 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
| 130 |
11 128 129
|
sylc |
|- ( ph -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 131 |
126 130
|
eqeltrrd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 132 |
1 2 3 105 125 131
|
ftc2 |
|- ( ph -> S. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) _d x = ( ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` B ) - ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` A ) ) ) |
| 133 |
91
|
fveq1d |
|- ( ph -> ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) = ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) ) |
| 134 |
133
|
ralrimivw |
|- ( ph -> A. x e. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) = ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) ) |
| 135 |
|
itgeq2 |
|- ( A. x e. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) = ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) -> S. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) _d x = S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x ) |
| 136 |
134 135
|
syl |
|- ( ph -> S. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) _d x = S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x ) |
| 137 |
|
eqidd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) = ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) |
| 138 |
|
simpr |
|- ( ( ph /\ t = B ) -> t = B ) |
| 139 |
138
|
oveq1d |
|- ( ( ph /\ t = B ) -> ( t ^ ( N + 1 ) ) = ( B ^ ( N + 1 ) ) ) |
| 140 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 141 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 142 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 143 |
140 141 3 142
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
| 144 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 145 |
144 45
|
expcld |
|- ( ph -> ( B ^ ( N + 1 ) ) e. CC ) |
| 146 |
137 139 143 145
|
fvmptd |
|- ( ph -> ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` B ) = ( B ^ ( N + 1 ) ) ) |
| 147 |
|
simpr |
|- ( ( ph /\ t = A ) -> t = A ) |
| 148 |
147
|
oveq1d |
|- ( ( ph /\ t = A ) -> ( t ^ ( N + 1 ) ) = ( A ^ ( N + 1 ) ) ) |
| 149 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 150 |
140 141 3 149
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
| 151 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 152 |
151 45
|
expcld |
|- ( ph -> ( A ^ ( N + 1 ) ) e. CC ) |
| 153 |
137 148 150 152
|
fvmptd |
|- ( ph -> ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` A ) = ( A ^ ( N + 1 ) ) ) |
| 154 |
146 153
|
oveq12d |
|- ( ph -> ( ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` B ) - ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` A ) ) = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
| 155 |
132 136 154
|
3eqtr3d |
|- ( ph -> S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
| 156 |
7
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( N + 1 ) e. CC ) |
| 157 |
156 14
|
mulcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( N + 1 ) x. ( x ^ N ) ) e. CC ) |
| 158 |
1 2 157
|
itgioo |
|- ( ph -> S. ( A (,) B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x = S. ( A [,] B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x ) |
| 159 |
38 155 158
|
3eqtr3rd |
|- ( ph -> S. ( A [,] B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
| 160 |
25 159
|
eqtrd |
|- ( ph -> ( ( N + 1 ) x. S. ( A [,] B ) ( x ^ N ) _d x ) = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
| 161 |
7 23 24 160
|
mvllmuld |
|- ( ph -> S. ( A [,] B ) ( x ^ N ) _d x = ( ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |