| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( n = 1 -> ( x ^ n ) = ( x ^ 1 ) ) |
| 2 |
1
|
mpteq2dv |
|- ( n = 1 -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ 1 ) ) ) |
| 3 |
2
|
oveq2d |
|- ( n = 1 -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) ) |
| 4 |
|
id |
|- ( n = 1 -> n = 1 ) |
| 5 |
|
oveq1 |
|- ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) |
| 6 |
5
|
oveq2d |
|- ( n = 1 -> ( x ^ ( n - 1 ) ) = ( x ^ ( 1 - 1 ) ) ) |
| 7 |
4 6
|
oveq12d |
|- ( n = 1 -> ( n x. ( x ^ ( n - 1 ) ) ) = ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) |
| 8 |
7
|
mpteq2dv |
|- ( n = 1 -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) ) |
| 9 |
3 8
|
eqeq12d |
|- ( n = 1 -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) ) ) |
| 10 |
|
oveq2 |
|- ( n = k -> ( x ^ n ) = ( x ^ k ) ) |
| 11 |
10
|
mpteq2dv |
|- ( n = k -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
| 12 |
11
|
oveq2d |
|- ( n = k -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ k ) ) ) ) |
| 13 |
|
id |
|- ( n = k -> n = k ) |
| 14 |
|
oveq1 |
|- ( n = k -> ( n - 1 ) = ( k - 1 ) ) |
| 15 |
14
|
oveq2d |
|- ( n = k -> ( x ^ ( n - 1 ) ) = ( x ^ ( k - 1 ) ) ) |
| 16 |
13 15
|
oveq12d |
|- ( n = k -> ( n x. ( x ^ ( n - 1 ) ) ) = ( k x. ( x ^ ( k - 1 ) ) ) ) |
| 17 |
16
|
mpteq2dv |
|- ( n = k -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
| 18 |
12 17
|
eqeq12d |
|- ( n = k -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) ) |
| 19 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( x ^ n ) = ( x ^ ( k + 1 ) ) ) |
| 20 |
19
|
mpteq2dv |
|- ( n = ( k + 1 ) -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) |
| 21 |
20
|
oveq2d |
|- ( n = ( k + 1 ) -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) ) |
| 22 |
|
id |
|- ( n = ( k + 1 ) -> n = ( k + 1 ) ) |
| 23 |
|
oveq1 |
|- ( n = ( k + 1 ) -> ( n - 1 ) = ( ( k + 1 ) - 1 ) ) |
| 24 |
23
|
oveq2d |
|- ( n = ( k + 1 ) -> ( x ^ ( n - 1 ) ) = ( x ^ ( ( k + 1 ) - 1 ) ) ) |
| 25 |
22 24
|
oveq12d |
|- ( n = ( k + 1 ) -> ( n x. ( x ^ ( n - 1 ) ) ) = ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) |
| 26 |
25
|
mpteq2dv |
|- ( n = ( k + 1 ) -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) |
| 27 |
21 26
|
eqeq12d |
|- ( n = ( k + 1 ) -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) ) |
| 28 |
|
oveq2 |
|- ( n = N -> ( x ^ n ) = ( x ^ N ) ) |
| 29 |
28
|
mpteq2dv |
|- ( n = N -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ N ) ) ) |
| 30 |
29
|
oveq2d |
|- ( n = N -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ N ) ) ) ) |
| 31 |
|
id |
|- ( n = N -> n = N ) |
| 32 |
|
oveq1 |
|- ( n = N -> ( n - 1 ) = ( N - 1 ) ) |
| 33 |
32
|
oveq2d |
|- ( n = N -> ( x ^ ( n - 1 ) ) = ( x ^ ( N - 1 ) ) ) |
| 34 |
31 33
|
oveq12d |
|- ( n = N -> ( n x. ( x ^ ( n - 1 ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) |
| 35 |
34
|
mpteq2dv |
|- ( n = N -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| 36 |
30 35
|
eqeq12d |
|- ( n = N -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
| 37 |
|
exp1 |
|- ( x e. CC -> ( x ^ 1 ) = x ) |
| 38 |
37
|
mpteq2ia |
|- ( x e. CC |-> ( x ^ 1 ) ) = ( x e. CC |-> x ) |
| 39 |
|
mptresid |
|- ( _I |` CC ) = ( x e. CC |-> x ) |
| 40 |
38 39
|
eqtr4i |
|- ( x e. CC |-> ( x ^ 1 ) ) = ( _I |` CC ) |
| 41 |
40
|
oveq2i |
|- ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( CC _D ( _I |` CC ) ) |
| 42 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 43 |
42
|
oveq2i |
|- ( x ^ ( 1 - 1 ) ) = ( x ^ 0 ) |
| 44 |
|
exp0 |
|- ( x e. CC -> ( x ^ 0 ) = 1 ) |
| 45 |
43 44
|
eqtrid |
|- ( x e. CC -> ( x ^ ( 1 - 1 ) ) = 1 ) |
| 46 |
45
|
oveq2d |
|- ( x e. CC -> ( 1 x. ( x ^ ( 1 - 1 ) ) ) = ( 1 x. 1 ) ) |
| 47 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 48 |
46 47
|
eqtrdi |
|- ( x e. CC -> ( 1 x. ( x ^ ( 1 - 1 ) ) ) = 1 ) |
| 49 |
48
|
mpteq2ia |
|- ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( x e. CC |-> 1 ) |
| 50 |
|
fconstmpt |
|- ( CC X. { 1 } ) = ( x e. CC |-> 1 ) |
| 51 |
49 50
|
eqtr4i |
|- ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( CC X. { 1 } ) |
| 52 |
|
dvid |
|- ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) |
| 53 |
51 52
|
eqtr4i |
|- ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( CC _D ( _I |` CC ) ) |
| 54 |
41 53
|
eqtr4i |
|- ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) |
| 55 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 56 |
55
|
adantr |
|- ( ( k e. NN /\ x e. CC ) -> k e. CC ) |
| 57 |
|
ax-1cn |
|- 1 e. CC |
| 58 |
|
pncan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
| 59 |
56 57 58
|
sylancl |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
| 60 |
59
|
oveq2d |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ ( ( k + 1 ) - 1 ) ) = ( x ^ k ) ) |
| 61 |
60
|
oveq2d |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) = ( ( k + 1 ) x. ( x ^ k ) ) ) |
| 62 |
57
|
a1i |
|- ( ( k e. NN /\ x e. CC ) -> 1 e. CC ) |
| 63 |
|
id |
|- ( x e. CC -> x e. CC ) |
| 64 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 65 |
|
expcl |
|- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ k ) e. CC ) |
| 66 |
63 64 65
|
syl2anr |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ k ) e. CC ) |
| 67 |
56 62 66
|
adddird |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ k ) ) = ( ( k x. ( x ^ k ) ) + ( 1 x. ( x ^ k ) ) ) ) |
| 68 |
66
|
mullidd |
|- ( ( k e. NN /\ x e. CC ) -> ( 1 x. ( x ^ k ) ) = ( x ^ k ) ) |
| 69 |
68
|
oveq2d |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ k ) ) + ( 1 x. ( x ^ k ) ) ) = ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) |
| 70 |
61 67 69
|
3eqtrd |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) = ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) |
| 71 |
70
|
mpteq2dva |
|- ( k e. NN -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) ) |
| 72 |
|
cnex |
|- CC e. _V |
| 73 |
72
|
a1i |
|- ( k e. NN -> CC e. _V ) |
| 74 |
56 66
|
mulcld |
|- ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ k ) ) e. CC ) |
| 75 |
|
nnm1nn0 |
|- ( k e. NN -> ( k - 1 ) e. NN0 ) |
| 76 |
|
expcl |
|- ( ( x e. CC /\ ( k - 1 ) e. NN0 ) -> ( x ^ ( k - 1 ) ) e. CC ) |
| 77 |
63 75 76
|
syl2anr |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ ( k - 1 ) ) e. CC ) |
| 78 |
56 77
|
mulcld |
|- ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ ( k - 1 ) ) ) e. CC ) |
| 79 |
|
simpr |
|- ( ( k e. NN /\ x e. CC ) -> x e. CC ) |
| 80 |
|
eqidd |
|- ( k e. NN -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
| 81 |
39
|
a1i |
|- ( k e. NN -> ( _I |` CC ) = ( x e. CC |-> x ) ) |
| 82 |
73 78 79 80 81
|
offval2 |
|- ( k e. NN -> ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) ) ) |
| 83 |
56 77 79
|
mulassd |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) = ( k x. ( ( x ^ ( k - 1 ) ) x. x ) ) ) |
| 84 |
|
expm1t |
|- ( ( x e. CC /\ k e. NN ) -> ( x ^ k ) = ( ( x ^ ( k - 1 ) ) x. x ) ) |
| 85 |
84
|
ancoms |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ k ) = ( ( x ^ ( k - 1 ) ) x. x ) ) |
| 86 |
85
|
oveq2d |
|- ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ k ) ) = ( k x. ( ( x ^ ( k - 1 ) ) x. x ) ) ) |
| 87 |
83 86
|
eqtr4d |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) = ( k x. ( x ^ k ) ) ) |
| 88 |
87
|
mpteq2dva |
|- ( k e. NN -> ( x e. CC |-> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) ) = ( x e. CC |-> ( k x. ( x ^ k ) ) ) ) |
| 89 |
82 88
|
eqtrd |
|- ( k e. NN -> ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( k x. ( x ^ k ) ) ) ) |
| 90 |
52 50
|
eqtri |
|- ( CC _D ( _I |` CC ) ) = ( x e. CC |-> 1 ) |
| 91 |
90
|
a1i |
|- ( k e. NN -> ( CC _D ( _I |` CC ) ) = ( x e. CC |-> 1 ) ) |
| 92 |
|
eqidd |
|- ( k e. NN -> ( x e. CC |-> ( x ^ k ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
| 93 |
73 62 66 91 92
|
offval2 |
|- ( k e. NN -> ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ k ) ) ) ) |
| 94 |
68
|
mpteq2dva |
|- ( k e. NN -> ( x e. CC |-> ( 1 x. ( x ^ k ) ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
| 95 |
93 94
|
eqtrd |
|- ( k e. NN -> ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
| 96 |
73 74 66 89 95
|
offval2 |
|- ( k e. NN -> ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( x e. CC |-> ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) ) |
| 97 |
71 96
|
eqtr4d |
|- ( k e. NN -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 98 |
|
oveq1 |
|- ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) = ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) ) |
| 99 |
98
|
oveq1d |
|- ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 100 |
99
|
eqcomd |
|- ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 101 |
97 100
|
sylan9eq |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 102 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 103 |
102
|
a1i |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> CC e. { RR , CC } ) |
| 104 |
66
|
fmpttd |
|- ( k e. NN -> ( x e. CC |-> ( x ^ k ) ) : CC --> CC ) |
| 105 |
104
|
adantr |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( x ^ k ) ) : CC --> CC ) |
| 106 |
|
f1oi |
|- ( _I |` CC ) : CC -1-1-onto-> CC |
| 107 |
|
f1of |
|- ( ( _I |` CC ) : CC -1-1-onto-> CC -> ( _I |` CC ) : CC --> CC ) |
| 108 |
106 107
|
mp1i |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( _I |` CC ) : CC --> CC ) |
| 109 |
|
simpr |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
| 110 |
109
|
dmeqd |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = dom ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
| 111 |
78
|
fmpttd |
|- ( k e. NN -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) : CC --> CC ) |
| 112 |
111
|
adantr |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) : CC --> CC ) |
| 113 |
112
|
fdmd |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) = CC ) |
| 114 |
110 113
|
eqtrd |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = CC ) |
| 115 |
|
1ex |
|- 1 e. _V |
| 116 |
115
|
fconst |
|- ( CC X. { 1 } ) : CC --> { 1 } |
| 117 |
52
|
feq1i |
|- ( ( CC _D ( _I |` CC ) ) : CC --> { 1 } <-> ( CC X. { 1 } ) : CC --> { 1 } ) |
| 118 |
116 117
|
mpbir |
|- ( CC _D ( _I |` CC ) ) : CC --> { 1 } |
| 119 |
118
|
fdmi |
|- dom ( CC _D ( _I |` CC ) ) = CC |
| 120 |
119
|
a1i |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( _I |` CC ) ) = CC ) |
| 121 |
103 105 108 114 120
|
dvmulf |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 122 |
73 66 79 92 81
|
offval2 |
|- ( k e. NN -> ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( ( x ^ k ) x. x ) ) ) |
| 123 |
|
expp1 |
|- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ ( k + 1 ) ) = ( ( x ^ k ) x. x ) ) |
| 124 |
63 64 123
|
syl2anr |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ ( k + 1 ) ) = ( ( x ^ k ) x. x ) ) |
| 125 |
124
|
mpteq2dva |
|- ( k e. NN -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) = ( x e. CC |-> ( ( x ^ k ) x. x ) ) ) |
| 126 |
122 125
|
eqtr4d |
|- ( k e. NN -> ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) |
| 127 |
126
|
oveq2d |
|- ( k e. NN -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) ) |
| 128 |
127
|
adantr |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) ) |
| 129 |
101 121 128
|
3eqtr2rd |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) |
| 130 |
129
|
ex |
|- ( k e. NN -> ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) ) |
| 131 |
9 18 27 36 54 130
|
nnind |
|- ( N e. NN -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |