| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvaddf.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvaddf.f |
|- ( ph -> F : X --> CC ) |
| 3 |
|
dvaddf.g |
|- ( ph -> G : X --> CC ) |
| 4 |
|
dvaddf.df |
|- ( ph -> dom ( S _D F ) = X ) |
| 5 |
|
dvaddf.dg |
|- ( ph -> dom ( S _D G ) = X ) |
| 6 |
2
|
adantr |
|- ( ( ph /\ x e. X ) -> F : X --> CC ) |
| 7 |
|
dvbsss |
|- dom ( S _D F ) C_ S |
| 8 |
4 7
|
eqsstrrdi |
|- ( ph -> X C_ S ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ x e. X ) -> X C_ S ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ x e. X ) -> G : X --> CC ) |
| 11 |
1
|
adantr |
|- ( ( ph /\ x e. X ) -> S e. { RR , CC } ) |
| 12 |
4
|
eleq2d |
|- ( ph -> ( x e. dom ( S _D F ) <-> x e. X ) ) |
| 13 |
12
|
biimpar |
|- ( ( ph /\ x e. X ) -> x e. dom ( S _D F ) ) |
| 14 |
5
|
eleq2d |
|- ( ph -> ( x e. dom ( S _D G ) <-> x e. X ) ) |
| 15 |
14
|
biimpar |
|- ( ( ph /\ x e. X ) -> x e. dom ( S _D G ) ) |
| 16 |
6 9 10 9 11 13 15
|
dvmul |
|- ( ( ph /\ x e. X ) -> ( ( S _D ( F oF x. G ) ) ` x ) = ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
| 17 |
16
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( ( S _D ( F oF x. G ) ) ` x ) ) = ( x e. X |-> ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) ) |
| 18 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC ) |
| 19 |
1 18
|
syl |
|- ( ph -> ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC ) |
| 20 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 21 |
1 20
|
syl |
|- ( ph -> S C_ CC ) |
| 22 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
| 24 |
1 8
|
ssexd |
|- ( ph -> X e. _V ) |
| 25 |
|
inidm |
|- ( X i^i X ) = X |
| 26 |
23 2 3 24 24 25
|
off |
|- ( ph -> ( F oF x. G ) : X --> CC ) |
| 27 |
21 26 8
|
dvbss |
|- ( ph -> dom ( S _D ( F oF x. G ) ) C_ X ) |
| 28 |
21
|
adantr |
|- ( ( ph /\ x e. X ) -> S C_ CC ) |
| 29 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 30 |
1 29
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ x e. X ) -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 32 |
|
ffun |
|- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
| 33 |
|
funfvbrb |
|- ( Fun ( S _D F ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
| 34 |
31 32 33
|
3syl |
|- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
| 35 |
13 34
|
mpbid |
|- ( ( ph /\ x e. X ) -> x ( S _D F ) ( ( S _D F ) ` x ) ) |
| 36 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 37 |
1 36
|
syl |
|- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ x e. X ) -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 39 |
|
ffun |
|- ( ( S _D G ) : dom ( S _D G ) --> CC -> Fun ( S _D G ) ) |
| 40 |
|
funfvbrb |
|- ( Fun ( S _D G ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
| 41 |
38 39 40
|
3syl |
|- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
| 42 |
15 41
|
mpbid |
|- ( ( ph /\ x e. X ) -> x ( S _D G ) ( ( S _D G ) ` x ) ) |
| 43 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 44 |
6 9 10 9 28 35 42 43
|
dvmulbr |
|- ( ( ph /\ x e. X ) -> x ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
| 45 |
|
reldv |
|- Rel ( S _D ( F oF x. G ) ) |
| 46 |
45
|
releldmi |
|- ( x ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) -> x e. dom ( S _D ( F oF x. G ) ) ) |
| 47 |
44 46
|
syl |
|- ( ( ph /\ x e. X ) -> x e. dom ( S _D ( F oF x. G ) ) ) |
| 48 |
27 47
|
eqelssd |
|- ( ph -> dom ( S _D ( F oF x. G ) ) = X ) |
| 49 |
48
|
feq2d |
|- ( ph -> ( ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC <-> ( S _D ( F oF x. G ) ) : X --> CC ) ) |
| 50 |
19 49
|
mpbid |
|- ( ph -> ( S _D ( F oF x. G ) ) : X --> CC ) |
| 51 |
50
|
feqmptd |
|- ( ph -> ( S _D ( F oF x. G ) ) = ( x e. X |-> ( ( S _D ( F oF x. G ) ) ` x ) ) ) |
| 52 |
|
ovexd |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. ( G ` x ) ) e. _V ) |
| 53 |
|
ovexd |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D G ) ` x ) x. ( F ` x ) ) e. _V ) |
| 54 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. _V ) |
| 55 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. _V ) |
| 56 |
4
|
feq2d |
|- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
| 57 |
30 56
|
mpbid |
|- ( ph -> ( S _D F ) : X --> CC ) |
| 58 |
57
|
feqmptd |
|- ( ph -> ( S _D F ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
| 59 |
3
|
feqmptd |
|- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
| 60 |
24 54 55 58 59
|
offval2 |
|- ( ph -> ( ( S _D F ) oF x. G ) = ( x e. X |-> ( ( ( S _D F ) ` x ) x. ( G ` x ) ) ) ) |
| 61 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( ( S _D G ) ` x ) e. _V ) |
| 62 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. _V ) |
| 63 |
5
|
feq2d |
|- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
| 64 |
37 63
|
mpbid |
|- ( ph -> ( S _D G ) : X --> CC ) |
| 65 |
64
|
feqmptd |
|- ( ph -> ( S _D G ) = ( x e. X |-> ( ( S _D G ) ` x ) ) ) |
| 66 |
2
|
feqmptd |
|- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
| 67 |
24 61 62 65 66
|
offval2 |
|- ( ph -> ( ( S _D G ) oF x. F ) = ( x e. X |-> ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
| 68 |
24 52 53 60 67
|
offval2 |
|- ( ph -> ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) = ( x e. X |-> ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) ) |
| 69 |
17 51 68
|
3eqtr4d |
|- ( ph -> ( S _D ( F oF x. G ) ) = ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) ) |