| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcmul.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvcmul.f |
|- ( ph -> F : X --> CC ) |
| 3 |
|
dvcmul.a |
|- ( ph -> A e. CC ) |
| 4 |
|
dvcmul.x |
|- ( ph -> X C_ S ) |
| 5 |
|
dvcmul.c |
|- ( ph -> C e. dom ( S _D F ) ) |
| 6 |
|
fconst6g |
|- ( A e. CC -> ( S X. { A } ) : S --> CC ) |
| 7 |
3 6
|
syl |
|- ( ph -> ( S X. { A } ) : S --> CC ) |
| 8 |
|
ssidd |
|- ( ph -> S C_ S ) |
| 9 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 10 |
1 9
|
syl |
|- ( ph -> S C_ CC ) |
| 11 |
10 2 4
|
dvbss |
|- ( ph -> dom ( S _D F ) C_ X ) |
| 12 |
11 5
|
sseldd |
|- ( ph -> C e. X ) |
| 13 |
4 12
|
sseldd |
|- ( ph -> C e. S ) |
| 14 |
|
fconst6g |
|- ( A e. CC -> ( CC X. { A } ) : CC --> CC ) |
| 15 |
3 14
|
syl |
|- ( ph -> ( CC X. { A } ) : CC --> CC ) |
| 16 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 17 |
|
dvconst |
|- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| 18 |
3 17
|
syl |
|- ( ph -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| 19 |
18
|
dmeqd |
|- ( ph -> dom ( CC _D ( CC X. { A } ) ) = dom ( CC X. { 0 } ) ) |
| 20 |
|
c0ex |
|- 0 e. _V |
| 21 |
20
|
fconst |
|- ( CC X. { 0 } ) : CC --> { 0 } |
| 22 |
21
|
fdmi |
|- dom ( CC X. { 0 } ) = CC |
| 23 |
19 22
|
eqtrdi |
|- ( ph -> dom ( CC _D ( CC X. { A } ) ) = CC ) |
| 24 |
10 23
|
sseqtrrd |
|- ( ph -> S C_ dom ( CC _D ( CC X. { A } ) ) ) |
| 25 |
|
dvres3 |
|- ( ( ( S e. { RR , CC } /\ ( CC X. { A } ) : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D ( CC X. { A } ) ) ) ) -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
| 26 |
1 15 16 24 25
|
syl22anc |
|- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
| 27 |
|
xpssres |
|- ( S C_ CC -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
| 28 |
10 27
|
syl |
|- ( ph -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
| 29 |
28
|
oveq2d |
|- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( S _D ( S X. { A } ) ) ) |
| 30 |
18
|
reseq1d |
|- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( ( CC X. { 0 } ) |` S ) ) |
| 31 |
|
xpssres |
|- ( S C_ CC -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
| 32 |
10 31
|
syl |
|- ( ph -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
| 33 |
30 32
|
eqtrd |
|- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( S X. { 0 } ) ) |
| 34 |
26 29 33
|
3eqtr3d |
|- ( ph -> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) |
| 35 |
20
|
fconst2 |
|- ( ( S _D ( S X. { A } ) ) : S --> { 0 } <-> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) |
| 36 |
34 35
|
sylibr |
|- ( ph -> ( S _D ( S X. { A } ) ) : S --> { 0 } ) |
| 37 |
36
|
fdmd |
|- ( ph -> dom ( S _D ( S X. { A } ) ) = S ) |
| 38 |
13 37
|
eleqtrrd |
|- ( ph -> C e. dom ( S _D ( S X. { A } ) ) ) |
| 39 |
7 8 2 4 1 38 5
|
dvmul |
|- ( ph -> ( ( S _D ( ( S X. { A } ) oF x. F ) ) ` C ) = ( ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) + ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) ) ) |
| 40 |
34
|
fveq1d |
|- ( ph -> ( ( S _D ( S X. { A } ) ) ` C ) = ( ( S X. { 0 } ) ` C ) ) |
| 41 |
20
|
fvconst2 |
|- ( C e. S -> ( ( S X. { 0 } ) ` C ) = 0 ) |
| 42 |
13 41
|
syl |
|- ( ph -> ( ( S X. { 0 } ) ` C ) = 0 ) |
| 43 |
40 42
|
eqtrd |
|- ( ph -> ( ( S _D ( S X. { A } ) ) ` C ) = 0 ) |
| 44 |
43
|
oveq1d |
|- ( ph -> ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) = ( 0 x. ( F ` C ) ) ) |
| 45 |
2 12
|
ffvelcdmd |
|- ( ph -> ( F ` C ) e. CC ) |
| 46 |
45
|
mul02d |
|- ( ph -> ( 0 x. ( F ` C ) ) = 0 ) |
| 47 |
44 46
|
eqtrd |
|- ( ph -> ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) = 0 ) |
| 48 |
|
fvconst2g |
|- ( ( A e. CC /\ C e. S ) -> ( ( S X. { A } ) ` C ) = A ) |
| 49 |
3 13 48
|
syl2anc |
|- ( ph -> ( ( S X. { A } ) ` C ) = A ) |
| 50 |
49
|
oveq2d |
|- ( ph -> ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) = ( ( ( S _D F ) ` C ) x. A ) ) |
| 51 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 52 |
1 51
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 53 |
52 5
|
ffvelcdmd |
|- ( ph -> ( ( S _D F ) ` C ) e. CC ) |
| 54 |
53 3
|
mulcomd |
|- ( ph -> ( ( ( S _D F ) ` C ) x. A ) = ( A x. ( ( S _D F ) ` C ) ) ) |
| 55 |
50 54
|
eqtrd |
|- ( ph -> ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) = ( A x. ( ( S _D F ) ` C ) ) ) |
| 56 |
47 55
|
oveq12d |
|- ( ph -> ( ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) + ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) ) = ( 0 + ( A x. ( ( S _D F ) ` C ) ) ) ) |
| 57 |
3 53
|
mulcld |
|- ( ph -> ( A x. ( ( S _D F ) ` C ) ) e. CC ) |
| 58 |
57
|
addlidd |
|- ( ph -> ( 0 + ( A x. ( ( S _D F ) ` C ) ) ) = ( A x. ( ( S _D F ) ` C ) ) ) |
| 59 |
39 56 58
|
3eqtrd |
|- ( ph -> ( ( S _D ( ( S X. { A } ) oF x. F ) ) ` C ) = ( A x. ( ( S _D F ) ` C ) ) ) |