| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcmul.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvcmul.f |
|- ( ph -> F : X --> CC ) |
| 3 |
|
dvcmul.a |
|- ( ph -> A e. CC ) |
| 4 |
|
dvcmulf.df |
|- ( ph -> dom ( S _D F ) = X ) |
| 5 |
|
fconstg |
|- ( A e. CC -> ( X X. { A } ) : X --> { A } ) |
| 6 |
3 5
|
syl |
|- ( ph -> ( X X. { A } ) : X --> { A } ) |
| 7 |
3
|
snssd |
|- ( ph -> { A } C_ CC ) |
| 8 |
6 7
|
fssd |
|- ( ph -> ( X X. { A } ) : X --> CC ) |
| 9 |
|
c0ex |
|- 0 e. _V |
| 10 |
9
|
fconst |
|- ( X X. { 0 } ) : X --> { 0 } |
| 11 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 12 |
1 11
|
syl |
|- ( ph -> S C_ CC ) |
| 13 |
|
fconstg |
|- ( A e. CC -> ( S X. { A } ) : S --> { A } ) |
| 14 |
3 13
|
syl |
|- ( ph -> ( S X. { A } ) : S --> { A } ) |
| 15 |
14 7
|
fssd |
|- ( ph -> ( S X. { A } ) : S --> CC ) |
| 16 |
|
ssidd |
|- ( ph -> S C_ S ) |
| 17 |
|
dvbsss |
|- dom ( S _D F ) C_ S |
| 18 |
17
|
a1i |
|- ( ph -> dom ( S _D F ) C_ S ) |
| 19 |
4 18
|
eqsstrrd |
|- ( ph -> X C_ S ) |
| 20 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 21 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
| 22 |
20 21
|
dvres |
|- ( ( ( S C_ CC /\ ( S X. { A } ) : S --> CC ) /\ ( S C_ S /\ X C_ S ) ) -> ( S _D ( ( S X. { A } ) |` X ) ) = ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) ) |
| 23 |
12 15 16 19 22
|
syl22anc |
|- ( ph -> ( S _D ( ( S X. { A } ) |` X ) ) = ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) ) |
| 24 |
19
|
resmptd |
|- ( ph -> ( ( x e. S |-> A ) |` X ) = ( x e. X |-> A ) ) |
| 25 |
|
fconstmpt |
|- ( S X. { A } ) = ( x e. S |-> A ) |
| 26 |
25
|
reseq1i |
|- ( ( S X. { A } ) |` X ) = ( ( x e. S |-> A ) |` X ) |
| 27 |
|
fconstmpt |
|- ( X X. { A } ) = ( x e. X |-> A ) |
| 28 |
24 26 27
|
3eqtr4g |
|- ( ph -> ( ( S X. { A } ) |` X ) = ( X X. { A } ) ) |
| 29 |
28
|
oveq2d |
|- ( ph -> ( S _D ( ( S X. { A } ) |` X ) ) = ( S _D ( X X. { A } ) ) ) |
| 30 |
19
|
resmptd |
|- ( ph -> ( ( x e. S |-> 0 ) |` X ) = ( x e. X |-> 0 ) ) |
| 31 |
|
fconstg |
|- ( A e. CC -> ( CC X. { A } ) : CC --> { A } ) |
| 32 |
3 31
|
syl |
|- ( ph -> ( CC X. { A } ) : CC --> { A } ) |
| 33 |
32 7
|
fssd |
|- ( ph -> ( CC X. { A } ) : CC --> CC ) |
| 34 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 35 |
|
dvconst |
|- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| 36 |
3 35
|
syl |
|- ( ph -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| 37 |
36
|
dmeqd |
|- ( ph -> dom ( CC _D ( CC X. { A } ) ) = dom ( CC X. { 0 } ) ) |
| 38 |
9
|
fconst |
|- ( CC X. { 0 } ) : CC --> { 0 } |
| 39 |
38
|
fdmi |
|- dom ( CC X. { 0 } ) = CC |
| 40 |
37 39
|
eqtrdi |
|- ( ph -> dom ( CC _D ( CC X. { A } ) ) = CC ) |
| 41 |
12 40
|
sseqtrrd |
|- ( ph -> S C_ dom ( CC _D ( CC X. { A } ) ) ) |
| 42 |
|
dvres3 |
|- ( ( ( S e. { RR , CC } /\ ( CC X. { A } ) : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D ( CC X. { A } ) ) ) ) -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
| 43 |
1 33 34 41 42
|
syl22anc |
|- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
| 44 |
|
xpssres |
|- ( S C_ CC -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
| 45 |
12 44
|
syl |
|- ( ph -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
| 46 |
45
|
oveq2d |
|- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( S _D ( S X. { A } ) ) ) |
| 47 |
36
|
reseq1d |
|- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( ( CC X. { 0 } ) |` S ) ) |
| 48 |
|
xpssres |
|- ( S C_ CC -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
| 49 |
12 48
|
syl |
|- ( ph -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
| 50 |
47 49
|
eqtrd |
|- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( S X. { 0 } ) ) |
| 51 |
43 46 50
|
3eqtr3d |
|- ( ph -> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) |
| 52 |
|
fconstmpt |
|- ( S X. { 0 } ) = ( x e. S |-> 0 ) |
| 53 |
51 52
|
eqtrdi |
|- ( ph -> ( S _D ( S X. { A } ) ) = ( x e. S |-> 0 ) ) |
| 54 |
20
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 55 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 56 |
54 12 55
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 57 |
|
topontop |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
| 58 |
56 57
|
syl |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
| 59 |
|
toponuni |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 60 |
56 59
|
syl |
|- ( ph -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 61 |
19 60
|
sseqtrd |
|- ( ph -> X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 62 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
| 63 |
62
|
ntrss2 |
|- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) |
| 64 |
58 61 63
|
syl2anc |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) |
| 65 |
12 2 19 21 20
|
dvbssntr |
|- ( ph -> dom ( S _D F ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) |
| 66 |
4 65
|
eqsstrrd |
|- ( ph -> X C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) |
| 67 |
64 66
|
eqssd |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) = X ) |
| 68 |
53 67
|
reseq12d |
|- ( ph -> ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) = ( ( x e. S |-> 0 ) |` X ) ) |
| 69 |
|
fconstmpt |
|- ( X X. { 0 } ) = ( x e. X |-> 0 ) |
| 70 |
69
|
a1i |
|- ( ph -> ( X X. { 0 } ) = ( x e. X |-> 0 ) ) |
| 71 |
30 68 70
|
3eqtr4d |
|- ( ph -> ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) = ( X X. { 0 } ) ) |
| 72 |
23 29 71
|
3eqtr3d |
|- ( ph -> ( S _D ( X X. { A } ) ) = ( X X. { 0 } ) ) |
| 73 |
72
|
feq1d |
|- ( ph -> ( ( S _D ( X X. { A } ) ) : X --> { 0 } <-> ( X X. { 0 } ) : X --> { 0 } ) ) |
| 74 |
10 73
|
mpbiri |
|- ( ph -> ( S _D ( X X. { A } ) ) : X --> { 0 } ) |
| 75 |
74
|
fdmd |
|- ( ph -> dom ( S _D ( X X. { A } ) ) = X ) |
| 76 |
1 8 2 75 4
|
dvmulf |
|- ( ph -> ( S _D ( ( X X. { A } ) oF x. F ) ) = ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) ) |
| 77 |
|
sseqin2 |
|- ( X C_ S <-> ( S i^i X ) = X ) |
| 78 |
19 77
|
sylib |
|- ( ph -> ( S i^i X ) = X ) |
| 79 |
78
|
mpteq1d |
|- ( ph -> ( x e. ( S i^i X ) |-> ( A x. ( F ` x ) ) ) = ( x e. X |-> ( A x. ( F ` x ) ) ) ) |
| 80 |
14
|
ffnd |
|- ( ph -> ( S X. { A } ) Fn S ) |
| 81 |
2
|
ffnd |
|- ( ph -> F Fn X ) |
| 82 |
1 19
|
ssexd |
|- ( ph -> X e. _V ) |
| 83 |
|
eqid |
|- ( S i^i X ) = ( S i^i X ) |
| 84 |
|
fvconst2g |
|- ( ( A e. CC /\ x e. S ) -> ( ( S X. { A } ) ` x ) = A ) |
| 85 |
3 84
|
sylan |
|- ( ( ph /\ x e. S ) -> ( ( S X. { A } ) ` x ) = A ) |
| 86 |
|
eqidd |
|- ( ( ph /\ x e. X ) -> ( F ` x ) = ( F ` x ) ) |
| 87 |
80 81 1 82 83 85 86
|
offval |
|- ( ph -> ( ( S X. { A } ) oF x. F ) = ( x e. ( S i^i X ) |-> ( A x. ( F ` x ) ) ) ) |
| 88 |
6
|
ffnd |
|- ( ph -> ( X X. { A } ) Fn X ) |
| 89 |
|
inidm |
|- ( X i^i X ) = X |
| 90 |
|
fvconst2g |
|- ( ( A e. CC /\ x e. X ) -> ( ( X X. { A } ) ` x ) = A ) |
| 91 |
3 90
|
sylan |
|- ( ( ph /\ x e. X ) -> ( ( X X. { A } ) ` x ) = A ) |
| 92 |
88 81 82 82 89 91 86
|
offval |
|- ( ph -> ( ( X X. { A } ) oF x. F ) = ( x e. X |-> ( A x. ( F ` x ) ) ) ) |
| 93 |
79 87 92
|
3eqtr4d |
|- ( ph -> ( ( S X. { A } ) oF x. F ) = ( ( X X. { A } ) oF x. F ) ) |
| 94 |
93
|
oveq2d |
|- ( ph -> ( S _D ( ( S X. { A } ) oF x. F ) ) = ( S _D ( ( X X. { A } ) oF x. F ) ) ) |
| 95 |
78
|
mpteq1d |
|- ( ph -> ( x e. ( S i^i X ) |-> ( A x. ( ( S _D F ) ` x ) ) ) = ( x e. X |-> ( A x. ( ( S _D F ) ` x ) ) ) ) |
| 96 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 97 |
1 96
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 98 |
4
|
feq2d |
|- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
| 99 |
97 98
|
mpbid |
|- ( ph -> ( S _D F ) : X --> CC ) |
| 100 |
99
|
ffnd |
|- ( ph -> ( S _D F ) Fn X ) |
| 101 |
|
eqidd |
|- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) = ( ( S _D F ) ` x ) ) |
| 102 |
80 100 1 82 83 85 101
|
offval |
|- ( ph -> ( ( S X. { A } ) oF x. ( S _D F ) ) = ( x e. ( S i^i X ) |-> ( A x. ( ( S _D F ) ` x ) ) ) ) |
| 103 |
|
0cnd |
|- ( ( ph /\ x e. X ) -> 0 e. CC ) |
| 104 |
|
ovexd |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. A ) e. _V ) |
| 105 |
72
|
oveq1d |
|- ( ph -> ( ( S _D ( X X. { A } ) ) oF x. F ) = ( ( X X. { 0 } ) oF x. F ) ) |
| 106 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 107 |
|
mul02 |
|- ( x e. CC -> ( 0 x. x ) = 0 ) |
| 108 |
107
|
adantl |
|- ( ( ph /\ x e. CC ) -> ( 0 x. x ) = 0 ) |
| 109 |
82 2 106 106 108
|
caofid2 |
|- ( ph -> ( ( X X. { 0 } ) oF x. F ) = ( X X. { 0 } ) ) |
| 110 |
105 109
|
eqtrd |
|- ( ph -> ( ( S _D ( X X. { A } ) ) oF x. F ) = ( X X. { 0 } ) ) |
| 111 |
110 69
|
eqtrdi |
|- ( ph -> ( ( S _D ( X X. { A } ) ) oF x. F ) = ( x e. X |-> 0 ) ) |
| 112 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. _V ) |
| 113 |
3
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 114 |
99
|
feqmptd |
|- ( ph -> ( S _D F ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
| 115 |
27
|
a1i |
|- ( ph -> ( X X. { A } ) = ( x e. X |-> A ) ) |
| 116 |
82 112 113 114 115
|
offval2 |
|- ( ph -> ( ( S _D F ) oF x. ( X X. { A } ) ) = ( x e. X |-> ( ( ( S _D F ) ` x ) x. A ) ) ) |
| 117 |
82 103 104 111 116
|
offval2 |
|- ( ph -> ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) = ( x e. X |-> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) ) ) |
| 118 |
99
|
ffvelcdmda |
|- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. CC ) |
| 119 |
118 113
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. A ) e. CC ) |
| 120 |
119
|
addlidd |
|- ( ( ph /\ x e. X ) -> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) = ( ( ( S _D F ) ` x ) x. A ) ) |
| 121 |
118 113
|
mulcomd |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. A ) = ( A x. ( ( S _D F ) ` x ) ) ) |
| 122 |
120 121
|
eqtrd |
|- ( ( ph /\ x e. X ) -> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) = ( A x. ( ( S _D F ) ` x ) ) ) |
| 123 |
122
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) ) = ( x e. X |-> ( A x. ( ( S _D F ) ` x ) ) ) ) |
| 124 |
117 123
|
eqtrd |
|- ( ph -> ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) = ( x e. X |-> ( A x. ( ( S _D F ) ` x ) ) ) ) |
| 125 |
95 102 124
|
3eqtr4d |
|- ( ph -> ( ( S X. { A } ) oF x. ( S _D F ) ) = ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) ) |
| 126 |
76 94 125
|
3eqtr4d |
|- ( ph -> ( S _D ( ( S X. { A } ) oF x. F ) ) = ( ( S X. { A } ) oF x. ( S _D F ) ) ) |