| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcmul.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvcmul.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 3 |
|
dvcmul.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 4 |
|
dvcmulf.df |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 5 |
|
fconstg |
⊢ ( 𝐴 ∈ ℂ → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ { 𝐴 } ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ { 𝐴 } ) |
| 7 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ℂ ) |
| 8 |
6 7
|
fssd |
⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ ℂ ) |
| 9 |
|
c0ex |
⊢ 0 ∈ V |
| 10 |
9
|
fconst |
⊢ ( 𝑋 × { 0 } ) : 𝑋 ⟶ { 0 } |
| 11 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 13 |
|
fconstg |
⊢ ( 𝐴 ∈ ℂ → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ { 𝐴 } ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ { 𝐴 } ) |
| 15 |
14 7
|
fssd |
⊢ ( 𝜑 → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ ℂ ) |
| 16 |
|
ssidd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑆 ) |
| 17 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 ) |
| 19 |
4 18
|
eqsstrrd |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 20 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 21 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 22 |
20 21
|
dvres |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ ℂ ) ∧ ( 𝑆 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) ) = ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ↾ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) ) |
| 23 |
12 15 16 19 22
|
syl22anc |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) ) = ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ↾ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) ) |
| 24 |
19
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 25 |
|
fconstmpt |
⊢ ( 𝑆 × { 𝐴 } ) = ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) |
| 26 |
25
|
reseq1i |
⊢ ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) = ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ↾ 𝑋 ) |
| 27 |
|
fconstmpt |
⊢ ( 𝑋 × { 𝐴 } ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
| 28 |
24 26 27
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) = ( 𝑋 × { 𝐴 } ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) ) = ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ) |
| 30 |
19
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 0 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 31 |
|
fconstg |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) : ℂ ⟶ { 𝐴 } ) |
| 32 |
3 31
|
syl |
⊢ ( 𝜑 → ( ℂ × { 𝐴 } ) : ℂ ⟶ { 𝐴 } ) |
| 33 |
32 7
|
fssd |
⊢ ( 𝜑 → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) |
| 34 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 35 |
|
dvconst |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| 36 |
3 35
|
syl |
⊢ ( 𝜑 → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| 37 |
36
|
dmeqd |
⊢ ( 𝜑 → dom ( ℂ D ( ℂ × { 𝐴 } ) ) = dom ( ℂ × { 0 } ) ) |
| 38 |
9
|
fconst |
⊢ ( ℂ × { 0 } ) : ℂ ⟶ { 0 } |
| 39 |
38
|
fdmi |
⊢ dom ( ℂ × { 0 } ) = ℂ |
| 40 |
37 39
|
eqtrdi |
⊢ ( 𝜑 → dom ( ℂ D ( ℂ × { 𝐴 } ) ) = ℂ ) |
| 41 |
12 40
|
sseqtrrd |
⊢ ( 𝜑 → 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) |
| 42 |
|
dvres3 |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) ) → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) |
| 43 |
1 33 34 41 42
|
syl22anc |
⊢ ( 𝜑 → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) |
| 44 |
|
xpssres |
⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) |
| 45 |
12 44
|
syl |
⊢ ( 𝜑 → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ) |
| 47 |
36
|
reseq1d |
⊢ ( 𝜑 → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( ( ℂ × { 0 } ) ↾ 𝑆 ) ) |
| 48 |
|
xpssres |
⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 49 |
12 48
|
syl |
⊢ ( 𝜑 → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 50 |
47 49
|
eqtrd |
⊢ ( 𝜑 → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 51 |
43 46 50
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = ( 𝑆 × { 0 } ) ) |
| 52 |
|
fconstmpt |
⊢ ( 𝑆 × { 0 } ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) |
| 53 |
51 52
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |
| 54 |
20
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 55 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 56 |
54 12 55
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 57 |
|
topontop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 58 |
56 57
|
syl |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 59 |
|
toponuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 60 |
56 59
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 61 |
19 60
|
sseqtrd |
⊢ ( 𝜑 → 𝑋 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 62 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 63 |
62
|
ntrss2 |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ 𝑋 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 64 |
58 61 63
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 65 |
12 2 19 21 20
|
dvbssntr |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) |
| 66 |
4 65
|
eqsstrrd |
⊢ ( 𝜑 → 𝑋 ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) |
| 67 |
64 66
|
eqssd |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) = 𝑋 ) |
| 68 |
53 67
|
reseq12d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ↾ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) = ( ( 𝑥 ∈ 𝑆 ↦ 0 ) ↾ 𝑋 ) ) |
| 69 |
|
fconstmpt |
⊢ ( 𝑋 × { 0 } ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → ( 𝑋 × { 0 } ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 71 |
30 68 70
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ↾ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) = ( 𝑋 × { 0 } ) ) |
| 72 |
23 29 71
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) = ( 𝑋 × { 0 } ) ) |
| 73 |
72
|
feq1d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) : 𝑋 ⟶ { 0 } ↔ ( 𝑋 × { 0 } ) : 𝑋 ⟶ { 0 } ) ) |
| 74 |
10 73
|
mpbiri |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) : 𝑋 ⟶ { 0 } ) |
| 75 |
74
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) = 𝑋 ) |
| 76 |
1 8 2 75 4
|
dvmulf |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑋 × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) ∘f + ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) ) ) |
| 77 |
|
sseqin2 |
⊢ ( 𝑋 ⊆ 𝑆 ↔ ( 𝑆 ∩ 𝑋 ) = 𝑋 ) |
| 78 |
19 77
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑋 ) = 𝑋 ) |
| 79 |
78
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ∩ 𝑋 ) ↦ ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 80 |
14
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 × { 𝐴 } ) Fn 𝑆 ) |
| 81 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 82 |
1 19
|
ssexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 83 |
|
eqid |
⊢ ( 𝑆 ∩ 𝑋 ) = ( 𝑆 ∩ 𝑋 ) |
| 84 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑆 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 85 |
3 84
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑆 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 86 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 87 |
80 81 1 82 83 85 86
|
offval |
⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ( 𝑆 ∩ 𝑋 ) ↦ ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 88 |
6
|
ffnd |
⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) Fn 𝑋 ) |
| 89 |
|
inidm |
⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 |
| 90 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 91 |
3 90
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 92 |
88 81 82 82 89 91 86
|
offval |
⊢ ( 𝜑 → ( ( 𝑋 × { 𝐴 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 93 |
79 87 92
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) = ( ( 𝑋 × { 𝐴 } ) ∘f · 𝐹 ) ) |
| 94 |
93
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝑆 D ( ( 𝑋 × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 95 |
78
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ∩ 𝑋 ) ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 96 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 97 |
1 96
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 98 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 99 |
97 98
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 100 |
99
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) Fn 𝑋 ) |
| 101 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) = ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) |
| 102 |
80 100 1 82 83 85 101
|
offval |
⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ∘f · ( 𝑆 D 𝐹 ) ) = ( 𝑥 ∈ ( 𝑆 ∩ 𝑋 ) ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 103 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ℂ ) |
| 104 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ∈ V ) |
| 105 |
72
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) = ( ( 𝑋 × { 0 } ) ∘f · 𝐹 ) ) |
| 106 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 107 |
|
mul02 |
⊢ ( 𝑥 ∈ ℂ → ( 0 · 𝑥 ) = 0 ) |
| 108 |
107
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 0 · 𝑥 ) = 0 ) |
| 109 |
82 2 106 106 108
|
caofid2 |
⊢ ( 𝜑 → ( ( 𝑋 × { 0 } ) ∘f · 𝐹 ) = ( 𝑋 × { 0 } ) ) |
| 110 |
105 109
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) = ( 𝑋 × { 0 } ) ) |
| 111 |
110 69
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 112 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ V ) |
| 113 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 114 |
99
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 115 |
27
|
a1i |
⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 116 |
82 112 113 114 115
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) ) |
| 117 |
82 103 104 111 116
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) ∘f + ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 0 + ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) ) ) |
| 118 |
99
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 119 |
118 113
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ∈ ℂ ) |
| 120 |
119
|
addlidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 0 + ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) |
| 121 |
118 113
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 122 |
120 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 0 + ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 123 |
122
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 0 + ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 124 |
117 123
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) ∘f + ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 125 |
95 102 124
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ∘f · ( 𝑆 D 𝐹 ) ) = ( ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) ∘f + ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) ) ) |
| 126 |
76 94 125
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ( 𝑆 × { 𝐴 } ) ∘f · ( 𝑆 D 𝐹 ) ) ) |