Metamath Proof Explorer


Theorem dvcmulf

Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvcmul.s φS
dvcmul.f φF:X
dvcmul.a φA
dvcmulf.df φdomFS=X
Assertion dvcmulf φSDS×A×fF=S×A×fFS

Proof

Step Hyp Ref Expression
1 dvcmul.s φS
2 dvcmul.f φF:X
3 dvcmul.a φA
4 dvcmulf.df φdomFS=X
5 fconstg AX×A:XA
6 3 5 syl φX×A:XA
7 3 snssd φA
8 6 7 fssd φX×A:X
9 c0ex 0V
10 9 fconst X×0:X0
11 recnprss SS
12 1 11 syl φS
13 fconstg AS×A:SA
14 3 13 syl φS×A:SA
15 14 7 fssd φS×A:S
16 ssidd φSS
17 dvbsss domFSS
18 17 a1i φdomFSS
19 4 18 eqsstrrd φXS
20 eqid TopOpenfld=TopOpenfld
21 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
22 20 21 dvres SS×A:SSSXSSDS×AX=S×ASintTopOpenfld𝑡SX
23 12 15 16 19 22 syl22anc φSDS×AX=S×ASintTopOpenfld𝑡SX
24 19 resmptd φxSAX=xXA
25 fconstmpt S×A=xSA
26 25 reseq1i S×AX=xSAX
27 fconstmpt X×A=xXA
28 24 26 27 3eqtr4g φS×AX=X×A
29 28 oveq2d φSDS×AX=SDX×A
30 19 resmptd φxS0X=xX0
31 fconstg A×A:A
32 3 31 syl φ×A:A
33 32 7 fssd φ×A:
34 ssidd φ
35 dvconst AD×A=×0
36 3 35 syl φD×A=×0
37 36 dmeqd φdom×A=dom×0
38 9 fconst ×0:0
39 38 fdmi dom×0=
40 37 39 eqtrdi φdom×A=
41 12 40 sseqtrrd φSdom×A
42 dvres3 S×A:Sdom×ASD×AS=×AS
43 1 33 34 41 42 syl22anc φSD×AS=×AS
44 xpssres S×AS=S×A
45 12 44 syl φ×AS=S×A
46 45 oveq2d φSD×AS=SDS×A
47 36 reseq1d φ×AS=×0S
48 xpssres S×0S=S×0
49 12 48 syl φ×0S=S×0
50 47 49 eqtrd φ×AS=S×0
51 43 46 50 3eqtr3d φSDS×A=S×0
52 fconstmpt S×0=xS0
53 51 52 eqtrdi φSDS×A=xS0
54 20 cnfldtopon TopOpenfldTopOn
55 resttopon TopOpenfldTopOnSTopOpenfld𝑡STopOnS
56 54 12 55 sylancr φTopOpenfld𝑡STopOnS
57 topontop TopOpenfld𝑡STopOnSTopOpenfld𝑡STop
58 56 57 syl φTopOpenfld𝑡STop
59 toponuni TopOpenfld𝑡STopOnSS=TopOpenfld𝑡S
60 56 59 syl φS=TopOpenfld𝑡S
61 19 60 sseqtrd φXTopOpenfld𝑡S
62 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
63 62 ntrss2 TopOpenfld𝑡STopXTopOpenfld𝑡SintTopOpenfld𝑡SXX
64 58 61 63 syl2anc φintTopOpenfld𝑡SXX
65 12 2 19 21 20 dvbssntr φdomFSintTopOpenfld𝑡SX
66 4 65 eqsstrrd φXintTopOpenfld𝑡SX
67 64 66 eqssd φintTopOpenfld𝑡SX=X
68 53 67 reseq12d φS×ASintTopOpenfld𝑡SX=xS0X
69 fconstmpt X×0=xX0
70 69 a1i φX×0=xX0
71 30 68 70 3eqtr4d φS×ASintTopOpenfld𝑡SX=X×0
72 23 29 71 3eqtr3d φSDX×A=X×0
73 72 feq1d φX×AS:X0X×0:X0
74 10 73 mpbiri φX×AS:X0
75 74 fdmd φdomX×AS=X
76 1 8 2 75 4 dvmulf φSDX×A×fF=X×AS×fF+fFS×fX×A
77 sseqin2 XSSX=X
78 19 77 sylib φSX=X
79 78 mpteq1d φxSXAFx=xXAFx
80 14 ffnd φS×AFnS
81 2 ffnd φFFnX
82 1 19 ssexd φXV
83 eqid SX=SX
84 fvconst2g AxSS×Ax=A
85 3 84 sylan φxSS×Ax=A
86 eqidd φxXFx=Fx
87 80 81 1 82 83 85 86 offval φS×A×fF=xSXAFx
88 6 ffnd φX×AFnX
89 inidm XX=X
90 fvconst2g AxXX×Ax=A
91 3 90 sylan φxXX×Ax=A
92 88 81 82 82 89 91 86 offval φX×A×fF=xXAFx
93 79 87 92 3eqtr4d φS×A×fF=X×A×fF
94 93 oveq2d φSDS×A×fF=SDX×A×fF
95 78 mpteq1d φxSXAFSx=xXAFSx
96 dvfg SFS:domFS
97 1 96 syl φFS:domFS
98 4 feq2d φFS:domFSFS:X
99 97 98 mpbid φFS:X
100 99 ffnd φFSFnX
101 eqidd φxXFSx=FSx
102 80 100 1 82 83 85 101 offval φS×A×fFS=xSXAFSx
103 0cnd φxX0
104 ovexd φxXFSxAV
105 72 oveq1d φX×AS×fF=X×0×fF
106 0cnd φ0
107 mul02 x0x=0
108 107 adantl φx0x=0
109 82 2 106 106 108 caofid2 φX×0×fF=X×0
110 105 109 eqtrd φX×AS×fF=X×0
111 110 69 eqtrdi φX×AS×fF=xX0
112 fvexd φxXFSxV
113 3 adantr φxXA
114 99 feqmptd φSDF=xXFSx
115 27 a1i φX×A=xXA
116 82 112 113 114 115 offval2 φFS×fX×A=xXFSxA
117 82 103 104 111 116 offval2 φX×AS×fF+fFS×fX×A=xX0+FSxA
118 99 ffvelcdmda φxXFSx
119 118 113 mulcld φxXFSxA
120 119 addlidd φxX0+FSxA=FSxA
121 118 113 mulcomd φxXFSxA=AFSx
122 120 121 eqtrd φxX0+FSxA=AFSx
123 122 mpteq2dva φxX0+FSxA=xXAFSx
124 117 123 eqtrd φX×AS×fF+fFS×fX×A=xXAFSx
125 95 102 124 3eqtr4d φS×A×fFS=X×AS×fF+fFS×fX×A
126 76 94 125 3eqtr4d φSDS×A×fF=S×A×fFS