Metamath Proof Explorer


Theorem dvbssntr

Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvcl.s φS
dvcl.f φF:A
dvcl.a φAS
dvbssntr.j J=K𝑡S
dvbssntr.k K=TopOpenfld
Assertion dvbssntr φdomFSintJA

Proof

Step Hyp Ref Expression
1 dvcl.s φS
2 dvcl.f φF:A
3 dvcl.a φAS
4 dvbssntr.j J=K𝑡S
5 dvbssntr.k K=TopOpenfld
6 4 5 dvfval SF:AASSDF=xintJAx×zAxFzFxzxlimxSDFintJA×
7 1 2 3 6 syl3anc φSDF=xintJAx×zAxFzFxzxlimxSDFintJA×
8 dmss SDFintJA×domFSdomintJA×
9 7 8 simpl2im φdomFSdomintJA×
10 dmxpss domintJA×intJA
11 9 10 sstrdi φdomFSintJA