Metamath Proof Explorer


Theorem dvbss

Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvcl.s φS
dvcl.f φF:A
dvcl.a φAS
Assertion dvbss φdomFSA

Proof

Step Hyp Ref Expression
1 dvcl.s φS
2 dvcl.f φF:A
3 dvcl.a φAS
4 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
5 eqid TopOpenfld=TopOpenfld
6 1 2 3 4 5 dvbssntr φdomFSintTopOpenfld𝑡SA
7 5 cnfldtop TopOpenfldTop
8 cnex V
9 ssexg SVSV
10 1 8 9 sylancl φSV
11 resttop TopOpenfldTopSVTopOpenfld𝑡STop
12 7 10 11 sylancr φTopOpenfld𝑡STop
13 5 cnfldtopon TopOpenfldTopOn
14 resttopon TopOpenfldTopOnSTopOpenfld𝑡STopOnS
15 13 1 14 sylancr φTopOpenfld𝑡STopOnS
16 toponuni TopOpenfld𝑡STopOnSS=TopOpenfld𝑡S
17 15 16 syl φS=TopOpenfld𝑡S
18 3 17 sseqtrd φATopOpenfld𝑡S
19 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
20 19 ntrss2 TopOpenfld𝑡STopATopOpenfld𝑡SintTopOpenfld𝑡SAA
21 12 18 20 syl2anc φintTopOpenfld𝑡SAA
22 6 21 sstrd φdomFSA