Metamath Proof Explorer


Theorem dvbss

Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvcl.s φ S
dvcl.f φ F : A
dvcl.a φ A S
Assertion dvbss φ dom F S A

Proof

Step Hyp Ref Expression
1 dvcl.s φ S
2 dvcl.f φ F : A
3 dvcl.a φ A S
4 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
5 eqid TopOpen fld = TopOpen fld
6 1 2 3 4 5 dvbssntr φ dom F S int TopOpen fld 𝑡 S A
7 5 cnfldtop TopOpen fld Top
8 cnex V
9 ssexg S V S V
10 1 8 9 sylancl φ S V
11 resttop TopOpen fld Top S V TopOpen fld 𝑡 S Top
12 7 10 11 sylancr φ TopOpen fld 𝑡 S Top
13 5 cnfldtopon TopOpen fld TopOn
14 resttopon TopOpen fld TopOn S TopOpen fld 𝑡 S TopOn S
15 13 1 14 sylancr φ TopOpen fld 𝑡 S TopOn S
16 toponuni TopOpen fld 𝑡 S TopOn S S = TopOpen fld 𝑡 S
17 15 16 syl φ S = TopOpen fld 𝑡 S
18 3 17 sseqtrd φ A TopOpen fld 𝑡 S
19 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
20 19 ntrss2 TopOpen fld 𝑡 S Top A TopOpen fld 𝑡 S int TopOpen fld 𝑡 S A A
21 12 18 20 syl2anc φ int TopOpen fld 𝑡 S A A
22 6 21 sstrd φ dom F S A