Metamath Proof Explorer


Definition df-limc

Description: Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion df-limc lim=f𝑝𝑚,xy|[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjx

Detailed syntax breakdown

Step Hyp Ref Expression
0 climc classlim
1 vf setvarf
2 cc class
3 cpm class𝑝𝑚
4 2 2 3 co class𝑝𝑚
5 vx setvarx
6 vy setvary
7 ctopn classTopOpen
8 ccnfld classfld
9 8 7 cfv classTopOpenfld
10 vj setvarj
11 vz setvarz
12 1 cv setvarf
13 12 cdm classdomf
14 5 cv setvarx
15 14 csn classx
16 13 15 cun classdomfx
17 11 cv setvarz
18 17 14 wceq wffz=x
19 6 cv setvary
20 17 12 cfv classfz
21 18 19 20 cif classifz=xyfz
22 11 16 21 cmpt classzdomfxifz=xyfz
23 10 cv setvarj
24 crest class𝑡
25 23 16 24 co classj𝑡domfx
26 ccnp classCnP
27 25 23 26 co classj𝑡domfxCnPj
28 14 27 cfv classj𝑡domfxCnPjx
29 22 28 wcel wffzdomfxifz=xyfzj𝑡domfxCnPjx
30 29 10 9 wsbc wff[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjx
31 30 6 cab classy|[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjx
32 1 5 4 2 31 cmpo classf𝑝𝑚,xy|[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjx
33 0 32 wceq wfflim=f𝑝𝑚,xy|[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjx