Description: Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | df-limc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | climc | |
|
1 | vf | |
|
2 | cc | |
|
3 | cpm | |
|
4 | 2 2 3 | co | |
5 | vx | |
|
6 | vy | |
|
7 | ctopn | |
|
8 | ccnfld | |
|
9 | 8 7 | cfv | |
10 | vj | |
|
11 | vz | |
|
12 | 1 | cv | |
13 | 12 | cdm | |
14 | 5 | cv | |
15 | 14 | csn | |
16 | 13 15 | cun | |
17 | 11 | cv | |
18 | 17 14 | wceq | |
19 | 6 | cv | |
20 | 17 12 | cfv | |
21 | 18 19 20 | cif | |
22 | 11 16 21 | cmpt | |
23 | 10 | cv | |
24 | crest | |
|
25 | 23 16 24 | co | |
26 | ccnp | |
|
27 | 25 23 26 | co | |
28 | 14 27 | cfv | |
29 | 22 28 | wcel | |
30 | 29 10 9 | wsbc | |
31 | 30 6 | cab | |
32 | 1 5 4 2 31 | cmpo | |
33 | 0 32 | wceq | |