| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 1 ) ) |
| 2 |
1
|
mpteq2dv |
⊢ ( 𝑛 = 1 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑛 = 1 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) ) |
| 4 |
|
id |
⊢ ( 𝑛 = 1 → 𝑛 = 1 ) |
| 5 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = ( 1 − 1 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( 1 − 1 ) ) ) |
| 7 |
4 6
|
oveq12d |
⊢ ( 𝑛 = 1 → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) |
| 8 |
7
|
mpteq2dv |
⊢ ( 𝑛 = 1 → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) ) |
| 9 |
3 8
|
eqeq12d |
⊢ ( 𝑛 = 1 → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑘 ) ) |
| 11 |
10
|
mpteq2dv |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 13 |
|
id |
⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) |
| 14 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 − 1 ) = ( 𝑘 − 1 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) |
| 16 |
13 15
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) |
| 17 |
16
|
mpteq2dv |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 18 |
12 17
|
eqeq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 22 |
|
id |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → 𝑛 = ( 𝑘 + 1 ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) |
| 25 |
22 24
|
oveq12d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) |
| 26 |
25
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
| 27 |
21 26
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑁 ) ) |
| 29 |
28
|
mpteq2dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) ) |
| 31 |
|
id |
⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) |
| 32 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 1 ) = ( 𝑁 − 1 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) |
| 34 |
31 33
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) |
| 35 |
34
|
mpteq2dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |
| 36 |
30 35
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
| 37 |
|
exp1 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 1 ) = 𝑥 ) |
| 38 |
37
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
| 39 |
|
mptresid |
⊢ ( I ↾ ℂ ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
| 40 |
38 39
|
eqtr4i |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) = ( I ↾ ℂ ) |
| 41 |
40
|
oveq2i |
⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) = ( ℂ D ( I ↾ ℂ ) ) |
| 42 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 43 |
42
|
oveq2i |
⊢ ( 𝑥 ↑ ( 1 − 1 ) ) = ( 𝑥 ↑ 0 ) |
| 44 |
|
exp0 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 0 ) = 1 ) |
| 45 |
43 44
|
eqtrid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ ( 1 − 1 ) ) = 1 ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) = ( 1 · 1 ) ) |
| 47 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 48 |
46 47
|
eqtrdi |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) = 1 ) |
| 49 |
48
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
| 50 |
|
fconstmpt |
⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
| 51 |
49 50
|
eqtr4i |
⊢ ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) = ( ℂ × { 1 } ) |
| 52 |
|
dvid |
⊢ ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) |
| 53 |
51 52
|
eqtr4i |
⊢ ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) = ( ℂ D ( I ↾ ℂ ) ) |
| 54 |
41 53
|
eqtr4i |
⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) |
| 55 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → 𝑘 ∈ ℂ ) |
| 57 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 58 |
|
pncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 59 |
56 57 58
|
sylancl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 60 |
59
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) = ( 𝑥 ↑ 𝑘 ) ) |
| 61 |
60
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑥 ↑ 𝑘 ) ) ) |
| 62 |
57
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) |
| 63 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
| 64 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 65 |
|
expcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
| 66 |
63 64 65
|
syl2anr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
| 67 |
56 62 66
|
adddird |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝑥 ↑ 𝑘 ) ) = ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 68 |
66
|
mullidd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 1 · ( 𝑥 ↑ 𝑘 ) ) = ( 𝑥 ↑ 𝑘 ) ) |
| 69 |
68
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) = ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) |
| 70 |
61 67 69
|
3eqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) |
| 71 |
70
|
mpteq2dva |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 72 |
|
cnex |
⊢ ℂ ∈ V |
| 73 |
72
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ℂ ∈ V ) |
| 74 |
56 66
|
mulcld |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ∈ ℂ ) |
| 75 |
|
nnm1nn0 |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 76 |
|
expcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑘 − 1 ) ∈ ℕ0 ) → ( 𝑥 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 77 |
63 75 76
|
syl2anr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 78 |
56 77
|
mulcld |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 79 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
| 80 |
|
eqidd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 81 |
39
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ( I ↾ ℂ ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) |
| 82 |
73 78 79 80 81
|
offval2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) ) ) |
| 83 |
56 77 79
|
mulassd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) = ( 𝑘 · ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) ) |
| 84 |
|
expm1t |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ↑ 𝑘 ) = ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) |
| 85 |
84
|
ancoms |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑘 ) = ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) = ( 𝑘 · ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) ) |
| 87 |
83 86
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) = ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ) |
| 88 |
87
|
mpteq2dva |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 89 |
82 88
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 90 |
52 50
|
eqtri |
⊢ ( ℂ D ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
| 91 |
90
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ( ℂ D ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
| 92 |
|
eqidd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
| 93 |
73 62 66 91 92
|
offval2 |
⊢ ( 𝑘 ∈ ℕ → ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 94 |
68
|
mpteq2dva |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
| 95 |
93 94
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
| 96 |
73 74 66 89 95
|
offval2 |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 97 |
71 96
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 98 |
|
oveq1 |
⊢ ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ) |
| 99 |
98
|
oveq1d |
⊢ ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 100 |
99
|
eqcomd |
⊢ ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) = ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 101 |
97 100
|
sylan9eq |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 102 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 103 |
102
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ℂ ∈ { ℝ , ℂ } ) |
| 104 |
66
|
fmpttd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
| 106 |
|
f1oi |
⊢ ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ |
| 107 |
|
f1of |
⊢ ( ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) |
| 108 |
106 107
|
mp1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) |
| 109 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 110 |
109
|
dmeqd |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = dom ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 111 |
78
|
fmpttd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) : ℂ ⟶ ℂ ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) : ℂ ⟶ ℂ ) |
| 113 |
112
|
fdmd |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) = ℂ ) |
| 114 |
110 113
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ℂ ) |
| 115 |
|
1ex |
⊢ 1 ∈ V |
| 116 |
115
|
fconst |
⊢ ( ℂ × { 1 } ) : ℂ ⟶ { 1 } |
| 117 |
52
|
feq1i |
⊢ ( ( ℂ D ( I ↾ ℂ ) ) : ℂ ⟶ { 1 } ↔ ( ℂ × { 1 } ) : ℂ ⟶ { 1 } ) |
| 118 |
116 117
|
mpbir |
⊢ ( ℂ D ( I ↾ ℂ ) ) : ℂ ⟶ { 1 } |
| 119 |
118
|
fdmi |
⊢ dom ( ℂ D ( I ↾ ℂ ) ) = ℂ |
| 120 |
119
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( ℂ D ( I ↾ ℂ ) ) = ℂ ) |
| 121 |
103 105 108 114 120
|
dvmulf |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) ) = ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 122 |
73 66 79 92 81
|
offval2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) ) |
| 123 |
|
expp1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) |
| 124 |
63 64 123
|
syl2anr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) |
| 125 |
124
|
mpteq2dva |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) ) |
| 126 |
122 125
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) |
| 127 |
126
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ℂ D ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 128 |
127
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 129 |
101 121 128
|
3eqtr2rd |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
| 130 |
129
|
ex |
⊢ ( 𝑘 ∈ ℕ → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) ) |
| 131 |
9 18 27 36 54 130
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |