| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc2.a |
|- ( ph -> A e. RR ) |
| 2 |
|
ftc2.b |
|- ( ph -> B e. RR ) |
| 3 |
|
ftc2.le |
|- ( ph -> A <_ B ) |
| 4 |
|
ftc2.c |
|- ( ph -> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 5 |
|
ftc2.i |
|- ( ph -> ( RR _D F ) e. L^1 ) |
| 6 |
|
ftc2.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 7 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 8 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 9 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 10 |
7 8 3 9
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
| 11 |
|
fvex |
|- ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) e. _V |
| 12 |
11
|
fvconst2 |
|- ( B e. ( A [,] B ) -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) ) |
| 13 |
10 12
|
syl |
|- ( ph -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) ) |
| 14 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 15 |
14
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 16 |
15
|
a1i |
|- ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 17 |
|
eqid |
|- ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) |
| 18 |
|
ssidd |
|- ( ph -> ( A (,) B ) C_ ( A (,) B ) ) |
| 19 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 20 |
19
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 21 |
|
cncff |
|- ( ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 22 |
4 21
|
syl |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 23 |
17 1 2 3 18 20 5 22
|
ftc1a |
|- ( ph -> ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 24 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) |
| 25 |
6 24
|
syl |
|- ( ph -> F : ( A [,] B ) --> CC ) |
| 26 |
25
|
feqmptd |
|- ( ph -> F = ( x e. ( A [,] B ) |-> ( F ` x ) ) ) |
| 27 |
26 6
|
eqeltrrd |
|- ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 28 |
14 16 23 27
|
cncfmpt2f |
|- ( ph -> ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 29 |
|
ax-resscn |
|- RR C_ CC |
| 30 |
29
|
a1i |
|- ( ph -> RR C_ CC ) |
| 31 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 32 |
1 2 31
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 33 |
|
fvex |
|- ( ( RR _D F ) ` t ) e. _V |
| 34 |
33
|
a1i |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) x ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
| 35 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 36 |
35
|
rexrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
| 37 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 38 |
1 2 37
|
syl2anc |
|- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 39 |
38
|
biimpa |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 40 |
39
|
simp3d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 41 |
|
iooss2 |
|- ( ( B e. RR* /\ x <_ B ) -> ( A (,) x ) C_ ( A (,) B ) ) |
| 42 |
36 40 41
|
syl2anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) C_ ( A (,) B ) ) |
| 43 |
|
ioombl |
|- ( A (,) x ) e. dom vol |
| 44 |
43
|
a1i |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) e. dom vol ) |
| 45 |
33
|
a1i |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
| 46 |
22
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) ) |
| 47 |
46 5
|
eqeltrrd |
|- ( ph -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 49 |
42 44 45 48
|
iblss |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) x ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 50 |
34 49
|
itgcl |
|- ( ( ph /\ x e. ( A [,] B ) ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t e. CC ) |
| 51 |
25
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
| 52 |
50 51
|
subcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) e. CC ) |
| 53 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 54 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 55 |
1 2 54
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 56 |
30 32 52 53 14 55
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( RR _D ( x e. ( A (,) B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) ) |
| 57 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 58 |
57
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 59 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 60 |
59
|
sseli |
|- ( x e. ( A (,) B ) -> x e. ( A [,] B ) ) |
| 61 |
60 50
|
sylan2 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t e. CC ) |
| 62 |
22
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 63 |
17 1 2 3 4 5
|
ftc1cn |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( RR _D F ) ) |
| 64 |
30 32 50 53 14 55
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( RR _D ( x e. ( A (,) B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) ) |
| 65 |
22
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
| 66 |
63 64 65
|
3eqtr3d |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
| 67 |
60 51
|
sylan2 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC ) |
| 68 |
30 32 51 53 14 55
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) = ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) ) |
| 69 |
26
|
oveq2d |
|- ( ph -> ( RR _D F ) = ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) ) |
| 70 |
69 65
|
eqtr3d |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
| 71 |
68 70
|
eqtr3d |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
| 72 |
58 61 62 66 67 62 71
|
dvmptsub |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( x e. ( A (,) B ) |-> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) ) ) |
| 73 |
62
|
subidd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) = 0 ) |
| 74 |
73
|
mpteq2dva |
|- ( ph -> ( x e. ( A (,) B ) |-> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) ) = ( x e. ( A (,) B ) |-> 0 ) ) |
| 75 |
56 72 74
|
3eqtrd |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( x e. ( A (,) B ) |-> 0 ) ) |
| 76 |
|
fconstmpt |
|- ( ( A (,) B ) X. { 0 } ) = ( x e. ( A (,) B ) |-> 0 ) |
| 77 |
75 76
|
eqtr4di |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( ( A (,) B ) X. { 0 } ) ) |
| 78 |
1 2 28 77
|
dveq0 |
|- ( ph -> ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) = ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ) |
| 79 |
78
|
fveq1d |
|- ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) ) |
| 80 |
|
oveq2 |
|- ( x = B -> ( A (,) x ) = ( A (,) B ) ) |
| 81 |
|
itgeq1 |
|- ( ( A (,) x ) = ( A (,) B ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
| 82 |
80 81
|
syl |
|- ( x = B -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
| 83 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
| 84 |
82 83
|
oveq12d |
|- ( x = B -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
| 85 |
|
eqid |
|- ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) = ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) |
| 86 |
|
ovex |
|- ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) e. _V |
| 87 |
84 85 86
|
fvmpt |
|- ( B e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
| 88 |
10 87
|
syl |
|- ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
| 89 |
79 88
|
eqtr3d |
|- ( ph -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
| 90 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 91 |
7 8 3 90
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
| 92 |
|
oveq2 |
|- ( x = A -> ( A (,) x ) = ( A (,) A ) ) |
| 93 |
|
iooid |
|- ( A (,) A ) = (/) |
| 94 |
92 93
|
eqtrdi |
|- ( x = A -> ( A (,) x ) = (/) ) |
| 95 |
|
itgeq1 |
|- ( ( A (,) x ) = (/) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. (/) ( ( RR _D F ) ` t ) _d t ) |
| 96 |
94 95
|
syl |
|- ( x = A -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. (/) ( ( RR _D F ) ` t ) _d t ) |
| 97 |
|
itg0 |
|- S. (/) ( ( RR _D F ) ` t ) _d t = 0 |
| 98 |
96 97
|
eqtrdi |
|- ( x = A -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = 0 ) |
| 99 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 100 |
98 99
|
oveq12d |
|- ( x = A -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = ( 0 - ( F ` A ) ) ) |
| 101 |
|
df-neg |
|- -u ( F ` A ) = ( 0 - ( F ` A ) ) |
| 102 |
100 101
|
eqtr4di |
|- ( x = A -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = -u ( F ` A ) ) |
| 103 |
|
negex |
|- -u ( F ` A ) e. _V |
| 104 |
102 85 103
|
fvmpt |
|- ( A e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) = -u ( F ` A ) ) |
| 105 |
91 104
|
syl |
|- ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) = -u ( F ` A ) ) |
| 106 |
13 89 105
|
3eqtr3d |
|- ( ph -> ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) = -u ( F ` A ) ) |
| 107 |
106
|
oveq2d |
|- ( ph -> ( ( F ` B ) + ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) = ( ( F ` B ) + -u ( F ` A ) ) ) |
| 108 |
25 10
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. CC ) |
| 109 |
33
|
a1i |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
| 110 |
109 47
|
itgcl |
|- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t e. CC ) |
| 111 |
108 110
|
pncan3d |
|- ( ph -> ( ( F ` B ) + ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
| 112 |
25 91
|
ffvelcdmd |
|- ( ph -> ( F ` A ) e. CC ) |
| 113 |
108 112
|
negsubd |
|- ( ph -> ( ( F ` B ) + -u ( F ` A ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 114 |
107 111 113
|
3eqtr3d |
|- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |