| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							 |-  ( Re ` ( A / ( _i ^ k ) ) ) = ( Re ` ( A / ( _i ^ k ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							dfitg | 
							 |-  S. (/) A _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ifan | 
							 |-  if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) = if ( x e. (/) , if ( 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) , 0 )  | 
						
						
							| 4 | 
							
								
							 | 
							noel | 
							 |-  -. x e. (/)  | 
						
						
							| 5 | 
							
								4
							 | 
							iffalsei | 
							 |-  if ( x e. (/) , if ( 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) , 0 ) = 0  | 
						
						
							| 6 | 
							
								3 5
							 | 
							eqtri | 
							 |-  if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) = 0  | 
						
						
							| 7 | 
							
								6
							 | 
							mpteq2i | 
							 |-  ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> 0 )  | 
						
						
							| 8 | 
							
								
							 | 
							fconstmpt | 
							 |-  ( RR X. { 0 } ) = ( x e. RR |-> 0 ) | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtr4i | 
							 |-  ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) = ( RR X. { 0 } ) | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2i | 
							 |-  ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( RR X. { 0 } ) ) | 
						
						
							| 11 | 
							
								
							 | 
							itg20 | 
							 |-  ( S.2 ` ( RR X. { 0 } ) ) = 0 | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqtri | 
							 |-  ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) = 0  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq2i | 
							 |-  ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( _i ^ k ) x. 0 )  | 
						
						
							| 14 | 
							
								
							 | 
							ax-icn | 
							 |-  _i e. CC  | 
						
						
							| 15 | 
							
								
							 | 
							elfznn0 | 
							 |-  ( k e. ( 0 ... 3 ) -> k e. NN0 )  | 
						
						
							| 16 | 
							
								
							 | 
							expcl | 
							 |-  ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							sylancr | 
							 |-  ( k e. ( 0 ... 3 ) -> ( _i ^ k ) e. CC )  | 
						
						
							| 18 | 
							
								17
							 | 
							mul01d | 
							 |-  ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. 0 ) = 0 )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							eqtrid | 
							 |-  ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = 0 )  | 
						
						
							| 20 | 
							
								19
							 | 
							sumeq2i | 
							 |-  sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = sum_ k e. ( 0 ... 3 ) 0  | 
						
						
							| 21 | 
							
								
							 | 
							fzfi | 
							 |-  ( 0 ... 3 ) e. Fin  | 
						
						
							| 22 | 
							
								21
							 | 
							olci | 
							 |-  ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin )  | 
						
						
							| 23 | 
							
								
							 | 
							sumz | 
							 |-  ( ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin ) -> sum_ k e. ( 0 ... 3 ) 0 = 0 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							ax-mp | 
							 |-  sum_ k e. ( 0 ... 3 ) 0 = 0  | 
						
						
							| 25 | 
							
								20 24
							 | 
							eqtri | 
							 |-  sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = 0  | 
						
						
							| 26 | 
							
								2 25
							 | 
							eqtri | 
							 |-  S. (/) A _d x = 0  |