| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							⊢ ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							dfitg | 
							⊢ ∫ ∅ 𝐴  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ifan | 
							⊢ if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( 𝑥  ∈  ∅ ,  if ( 0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  | 
						
						
							| 4 | 
							
								
							 | 
							noel | 
							⊢ ¬  𝑥  ∈  ∅  | 
						
						
							| 5 | 
							
								4
							 | 
							iffalsei | 
							⊢ if ( 𝑥  ∈  ∅ ,  if ( 0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  0  | 
						
						
							| 6 | 
							
								3 5
							 | 
							eqtri | 
							⊢ if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  0  | 
						
						
							| 7 | 
							
								6
							 | 
							mpteq2i | 
							⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  0 )  | 
						
						
							| 8 | 
							
								
							 | 
							fconstmpt | 
							⊢ ( ℝ  ×  { 0 } )  =  ( 𝑥  ∈  ℝ  ↦  0 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtr4i | 
							⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( ℝ  ×  { 0 } )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2i | 
							⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  | 
						
						
							| 11 | 
							
								
							 | 
							itg20 | 
							⊢ ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  =  0  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqtri | 
							⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  0  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq2i | 
							⊢ ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  0 )  | 
						
						
							| 14 | 
							
								
							 | 
							ax-icn | 
							⊢ i  ∈  ℂ  | 
						
						
							| 15 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 16 | 
							
								
							 | 
							expcl | 
							⊢ ( ( i  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( i ↑ 𝑘 )  ∈  ℂ )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							sylancr | 
							⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( i ↑ 𝑘 )  ∈  ℂ )  | 
						
						
							| 18 | 
							
								17
							 | 
							mul01d | 
							⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ( i ↑ 𝑘 )  ·  0 )  =  0 )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							eqtrid | 
							⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  0 )  | 
						
						
							| 20 | 
							
								19
							 | 
							sumeq2i | 
							⊢ Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 3 ) 0  | 
						
						
							| 21 | 
							
								
							 | 
							fzfi | 
							⊢ ( 0 ... 3 )  ∈  Fin  | 
						
						
							| 22 | 
							
								21
							 | 
							olci | 
							⊢ ( ( 0 ... 3 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 3 )  ∈  Fin )  | 
						
						
							| 23 | 
							
								
							 | 
							sumz | 
							⊢ ( ( ( 0 ... 3 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 3 )  ∈  Fin )  →  Σ 𝑘  ∈  ( 0 ... 3 ) 0  =  0 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							ax-mp | 
							⊢ Σ 𝑘  ∈  ( 0 ... 3 ) 0  =  0  | 
						
						
							| 25 | 
							
								20 24
							 | 
							eqtri | 
							⊢ Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  0  | 
						
						
							| 26 | 
							
								2 25
							 | 
							eqtri | 
							⊢ ∫ ∅ 𝐴  d 𝑥  =  0  |