| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iftrue |
|- ( ph -> if ( ph , if ( ps , A , B ) , B ) = if ( ps , A , B ) ) |
| 2 |
|
ibar |
|- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
| 3 |
2
|
ifbid |
|- ( ph -> if ( ps , A , B ) = if ( ( ph /\ ps ) , A , B ) ) |
| 4 |
1 3
|
eqtr2d |
|- ( ph -> if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) ) |
| 5 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
| 6 |
5
|
con3i |
|- ( -. ph -> -. ( ph /\ ps ) ) |
| 7 |
6
|
iffalsed |
|- ( -. ph -> if ( ( ph /\ ps ) , A , B ) = B ) |
| 8 |
|
iffalse |
|- ( -. ph -> if ( ph , if ( ps , A , B ) , B ) = B ) |
| 9 |
7 8
|
eqtr4d |
|- ( -. ph -> if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) ) |
| 10 |
4 9
|
pm2.61i |
|- if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) |