| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc2ditg.x |
|- ( ph -> X e. RR ) |
| 2 |
|
ftc2ditg.y |
|- ( ph -> Y e. RR ) |
| 3 |
|
ftc2ditg.a |
|- ( ph -> A e. ( X [,] Y ) ) |
| 4 |
|
ftc2ditg.b |
|- ( ph -> B e. ( X [,] Y ) ) |
| 5 |
|
ftc2ditg.c |
|- ( ph -> ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 6 |
|
ftc2ditg.i |
|- ( ph -> ( RR _D F ) e. L^1 ) |
| 7 |
|
ftc2ditg.f |
|- ( ph -> F e. ( ( X [,] Y ) -cn-> CC ) ) |
| 8 |
|
simpr |
|- ( ( ph /\ A <_ B ) -> A <_ B ) |
| 9 |
8
|
ditgpos |
|- ( ( ph /\ A <_ B ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
| 10 |
|
iccssre |
|- ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) |
| 11 |
1 2 10
|
syl2anc |
|- ( ph -> ( X [,] Y ) C_ RR ) |
| 12 |
11 3
|
sseldd |
|- ( ph -> A e. RR ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ A <_ B ) -> A e. RR ) |
| 14 |
11 4
|
sseldd |
|- ( ph -> B e. RR ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ A <_ B ) -> B e. RR ) |
| 16 |
|
ax-resscn |
|- RR C_ CC |
| 17 |
16
|
a1i |
|- ( ( ph /\ A <_ B ) -> RR C_ CC ) |
| 18 |
|
cncff |
|- ( F e. ( ( X [,] Y ) -cn-> CC ) -> F : ( X [,] Y ) --> CC ) |
| 19 |
7 18
|
syl |
|- ( ph -> F : ( X [,] Y ) --> CC ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ A <_ B ) -> F : ( X [,] Y ) --> CC ) |
| 21 |
11
|
adantr |
|- ( ( ph /\ A <_ B ) -> ( X [,] Y ) C_ RR ) |
| 22 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 23 |
12 14 22
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ A <_ B ) -> ( A [,] B ) C_ RR ) |
| 25 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 26 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 27 |
25 26
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( X [,] Y ) --> CC ) /\ ( ( X [,] Y ) C_ RR /\ ( A [,] B ) C_ RR ) ) -> ( RR _D ( F |` ( A [,] B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 28 |
17 20 21 24 27
|
syl22anc |
|- ( ( ph /\ A <_ B ) -> ( RR _D ( F |` ( A [,] B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 29 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 30 |
12 14 29
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ A <_ B ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 32 |
31
|
reseq2d |
|- ( ( ph /\ A <_ B ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) = ( ( RR _D F ) |` ( A (,) B ) ) ) |
| 33 |
28 32
|
eqtrd |
|- ( ( ph /\ A <_ B ) -> ( RR _D ( F |` ( A [,] B ) ) ) = ( ( RR _D F ) |` ( A (,) B ) ) ) |
| 34 |
1
|
rexrd |
|- ( ph -> X e. RR* ) |
| 35 |
|
elicc2 |
|- ( ( X e. RR /\ Y e. RR ) -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
| 36 |
1 2 35
|
syl2anc |
|- ( ph -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
| 37 |
3 36
|
mpbid |
|- ( ph -> ( A e. RR /\ X <_ A /\ A <_ Y ) ) |
| 38 |
37
|
simp2d |
|- ( ph -> X <_ A ) |
| 39 |
|
iooss1 |
|- ( ( X e. RR* /\ X <_ A ) -> ( A (,) B ) C_ ( X (,) B ) ) |
| 40 |
34 38 39
|
syl2anc |
|- ( ph -> ( A (,) B ) C_ ( X (,) B ) ) |
| 41 |
2
|
rexrd |
|- ( ph -> Y e. RR* ) |
| 42 |
|
elicc2 |
|- ( ( X e. RR /\ Y e. RR ) -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
| 43 |
1 2 42
|
syl2anc |
|- ( ph -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
| 44 |
4 43
|
mpbid |
|- ( ph -> ( B e. RR /\ X <_ B /\ B <_ Y ) ) |
| 45 |
44
|
simp3d |
|- ( ph -> B <_ Y ) |
| 46 |
|
iooss2 |
|- ( ( Y e. RR* /\ B <_ Y ) -> ( X (,) B ) C_ ( X (,) Y ) ) |
| 47 |
41 45 46
|
syl2anc |
|- ( ph -> ( X (,) B ) C_ ( X (,) Y ) ) |
| 48 |
40 47
|
sstrd |
|- ( ph -> ( A (,) B ) C_ ( X (,) Y ) ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ A <_ B ) -> ( A (,) B ) C_ ( X (,) Y ) ) |
| 50 |
5
|
adantr |
|- ( ( ph /\ A <_ B ) -> ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 51 |
|
rescncf |
|- ( ( A (,) B ) C_ ( X (,) Y ) -> ( ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) -> ( ( RR _D F ) |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) ) |
| 52 |
49 50 51
|
sylc |
|- ( ( ph /\ A <_ B ) -> ( ( RR _D F ) |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 53 |
33 52
|
eqeltrd |
|- ( ( ph /\ A <_ B ) -> ( RR _D ( F |` ( A [,] B ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 54 |
|
cncff |
|- ( ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) -> ( RR _D F ) : ( X (,) Y ) --> CC ) |
| 55 |
5 54
|
syl |
|- ( ph -> ( RR _D F ) : ( X (,) Y ) --> CC ) |
| 56 |
55
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ A <_ B ) -> ( RR _D F ) = ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) ) |
| 58 |
57
|
reseq1d |
|- ( ( ph /\ A <_ B ) -> ( ( RR _D F ) |` ( A (,) B ) ) = ( ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) |` ( A (,) B ) ) ) |
| 59 |
49
|
resmptd |
|- ( ( ph /\ A <_ B ) -> ( ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) |` ( A (,) B ) ) = ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) ) |
| 60 |
58 59
|
eqtrd |
|- ( ( ph /\ A <_ B ) -> ( ( RR _D F ) |` ( A (,) B ) ) = ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) ) |
| 61 |
33 60
|
eqtrd |
|- ( ( ph /\ A <_ B ) -> ( RR _D ( F |` ( A [,] B ) ) ) = ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) ) |
| 62 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
| 63 |
62
|
a1i |
|- ( ( ph /\ A <_ B ) -> ( A (,) B ) e. dom vol ) |
| 64 |
|
fvexd |
|- ( ( ( ph /\ A <_ B ) /\ t e. ( X (,) Y ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
| 65 |
6
|
adantr |
|- ( ( ph /\ A <_ B ) -> ( RR _D F ) e. L^1 ) |
| 66 |
57 65
|
eqeltrrd |
|- ( ( ph /\ A <_ B ) -> ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 67 |
49 63 64 66
|
iblss |
|- ( ( ph /\ A <_ B ) -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 68 |
61 67
|
eqeltrd |
|- ( ( ph /\ A <_ B ) -> ( RR _D ( F |` ( A [,] B ) ) ) e. L^1 ) |
| 69 |
|
iccss2 |
|- ( ( A e. ( X [,] Y ) /\ B e. ( X [,] Y ) ) -> ( A [,] B ) C_ ( X [,] Y ) ) |
| 70 |
3 4 69
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ ( X [,] Y ) ) |
| 71 |
|
rescncf |
|- ( ( A [,] B ) C_ ( X [,] Y ) -> ( F e. ( ( X [,] Y ) -cn-> CC ) -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
| 72 |
70 7 71
|
sylc |
|- ( ph -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ A <_ B ) -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 74 |
13 15 8 53 68 73
|
ftc2 |
|- ( ( ph /\ A <_ B ) -> S. ( A (,) B ) ( ( RR _D ( F |` ( A [,] B ) ) ) ` t ) _d t = ( ( ( F |` ( A [,] B ) ) ` B ) - ( ( F |` ( A [,] B ) ) ` A ) ) ) |
| 75 |
33
|
fveq1d |
|- ( ( ph /\ A <_ B ) -> ( ( RR _D ( F |` ( A [,] B ) ) ) ` t ) = ( ( ( RR _D F ) |` ( A (,) B ) ) ` t ) ) |
| 76 |
|
fvres |
|- ( t e. ( A (,) B ) -> ( ( ( RR _D F ) |` ( A (,) B ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
| 77 |
75 76
|
sylan9eq |
|- ( ( ( ph /\ A <_ B ) /\ t e. ( A (,) B ) ) -> ( ( RR _D ( F |` ( A [,] B ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
| 78 |
77
|
itgeq2dv |
|- ( ( ph /\ A <_ B ) -> S. ( A (,) B ) ( ( RR _D ( F |` ( A [,] B ) ) ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
| 79 |
13
|
rexrd |
|- ( ( ph /\ A <_ B ) -> A e. RR* ) |
| 80 |
15
|
rexrd |
|- ( ( ph /\ A <_ B ) -> B e. RR* ) |
| 81 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 82 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 83 |
|
fvres |
|- ( B e. ( A [,] B ) -> ( ( F |` ( A [,] B ) ) ` B ) = ( F ` B ) ) |
| 84 |
|
fvres |
|- ( A e. ( A [,] B ) -> ( ( F |` ( A [,] B ) ) ` A ) = ( F ` A ) ) |
| 85 |
83 84
|
oveqan12d |
|- ( ( B e. ( A [,] B ) /\ A e. ( A [,] B ) ) -> ( ( ( F |` ( A [,] B ) ) ` B ) - ( ( F |` ( A [,] B ) ) ` A ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 86 |
81 82 85
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( ( F |` ( A [,] B ) ) ` B ) - ( ( F |` ( A [,] B ) ) ` A ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 87 |
79 80 8 86
|
syl3anc |
|- ( ( ph /\ A <_ B ) -> ( ( ( F |` ( A [,] B ) ) ` B ) - ( ( F |` ( A [,] B ) ) ` A ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 88 |
74 78 87
|
3eqtr3d |
|- ( ( ph /\ A <_ B ) -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| 89 |
9 88
|
eqtrd |
|- ( ( ph /\ A <_ B ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |