| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc2ditg.x |
|- ( ph -> X e. RR ) |
| 2 |
|
ftc2ditg.y |
|- ( ph -> Y e. RR ) |
| 3 |
|
ftc2ditg.a |
|- ( ph -> A e. ( X [,] Y ) ) |
| 4 |
|
ftc2ditg.b |
|- ( ph -> B e. ( X [,] Y ) ) |
| 5 |
|
ftc2ditg.c |
|- ( ph -> ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 6 |
|
ftc2ditg.i |
|- ( ph -> ( RR _D F ) e. L^1 ) |
| 7 |
|
ftc2ditg.f |
|- ( ph -> F e. ( ( X [,] Y ) -cn-> CC ) ) |
| 8 |
|
iccssre |
|- ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) |
| 9 |
1 2 8
|
syl2anc |
|- ( ph -> ( X [,] Y ) C_ RR ) |
| 10 |
9 3
|
sseldd |
|- ( ph -> A e. RR ) |
| 11 |
9 4
|
sseldd |
|- ( ph -> B e. RR ) |
| 12 |
1 2 3 4 5 6 7
|
ftc2ditglem |
|- ( ( ph /\ A <_ B ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| 13 |
|
fvexd |
|- ( ( ph /\ t e. ( X (,) Y ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
| 14 |
|
cncff |
|- ( ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) -> ( RR _D F ) : ( X (,) Y ) --> CC ) |
| 15 |
5 14
|
syl |
|- ( ph -> ( RR _D F ) : ( X (,) Y ) --> CC ) |
| 16 |
15
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) ) |
| 17 |
16 6
|
eqeltrrd |
|- ( ph -> ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 18 |
1 2 4 3 13 17
|
ditgswap |
|- ( ph -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = -u S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ B <_ A ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = -u S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t ) |
| 20 |
1 2 4 3 5 6 7
|
ftc2ditglem |
|- ( ( ph /\ B <_ A ) -> S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t = ( ( F ` A ) - ( F ` B ) ) ) |
| 21 |
20
|
negeqd |
|- ( ( ph /\ B <_ A ) -> -u S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t = -u ( ( F ` A ) - ( F ` B ) ) ) |
| 22 |
|
cncff |
|- ( F e. ( ( X [,] Y ) -cn-> CC ) -> F : ( X [,] Y ) --> CC ) |
| 23 |
7 22
|
syl |
|- ( ph -> F : ( X [,] Y ) --> CC ) |
| 24 |
23 3
|
ffvelcdmd |
|- ( ph -> ( F ` A ) e. CC ) |
| 25 |
23 4
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. CC ) |
| 26 |
24 25
|
negsubdi2d |
|- ( ph -> -u ( ( F ` A ) - ( F ` B ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ B <_ A ) -> -u ( ( F ` A ) - ( F ` B ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 28 |
19 21 27
|
3eqtrd |
|- ( ( ph /\ B <_ A ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| 29 |
10 11 12 28
|
lecasei |
|- ( ph -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |