Step |
Hyp |
Ref |
Expression |
1 |
|
itgparts.x |
|- ( ph -> X e. RR ) |
2 |
|
itgparts.y |
|- ( ph -> Y e. RR ) |
3 |
|
itgparts.le |
|- ( ph -> X <_ Y ) |
4 |
|
itgparts.a |
|- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) ) |
5 |
|
itgparts.c |
|- ( ph -> ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) ) |
6 |
|
itgparts.b |
|- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( X (,) Y ) -cn-> CC ) ) |
7 |
|
itgparts.d |
|- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. ( ( X (,) Y ) -cn-> CC ) ) |
8 |
|
itgparts.ad |
|- ( ph -> ( x e. ( X (,) Y ) |-> ( A x. D ) ) e. L^1 ) |
9 |
|
itgparts.bc |
|- ( ph -> ( x e. ( X (,) Y ) |-> ( B x. C ) ) e. L^1 ) |
10 |
|
itgparts.da |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
11 |
|
itgparts.dc |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> C ) ) = ( x e. ( X (,) Y ) |-> D ) ) |
12 |
|
itgparts.e |
|- ( ( ph /\ x = X ) -> ( A x. C ) = E ) |
13 |
|
itgparts.f |
|- ( ( ph /\ x = Y ) -> ( A x. C ) = F ) |
14 |
|
cncff |
|- ( ( x e. ( X (,) Y ) |-> B ) e. ( ( X (,) Y ) -cn-> CC ) -> ( x e. ( X (,) Y ) |-> B ) : ( X (,) Y ) --> CC ) |
15 |
6 14
|
syl |
|- ( ph -> ( x e. ( X (,) Y ) |-> B ) : ( X (,) Y ) --> CC ) |
16 |
15
|
fvmptelrn |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> B e. CC ) |
17 |
|
ioossicc |
|- ( X (,) Y ) C_ ( X [,] Y ) |
18 |
17
|
sseli |
|- ( x e. ( X (,) Y ) -> x e. ( X [,] Y ) ) |
19 |
|
cncff |
|- ( ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) -> ( x e. ( X [,] Y ) |-> C ) : ( X [,] Y ) --> CC ) |
20 |
5 19
|
syl |
|- ( ph -> ( x e. ( X [,] Y ) |-> C ) : ( X [,] Y ) --> CC ) |
21 |
20
|
fvmptelrn |
|- ( ( ph /\ x e. ( X [,] Y ) ) -> C e. CC ) |
22 |
18 21
|
sylan2 |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> C e. CC ) |
23 |
16 22
|
mulcld |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> ( B x. C ) e. CC ) |
24 |
23 9
|
itgcl |
|- ( ph -> S. ( X (,) Y ) ( B x. C ) _d x e. CC ) |
25 |
|
cncff |
|- ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> CC ) |
26 |
4 25
|
syl |
|- ( ph -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> CC ) |
27 |
26
|
fvmptelrn |
|- ( ( ph /\ x e. ( X [,] Y ) ) -> A e. CC ) |
28 |
18 27
|
sylan2 |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> A e. CC ) |
29 |
|
cncff |
|- ( ( x e. ( X (,) Y ) |-> D ) e. ( ( X (,) Y ) -cn-> CC ) -> ( x e. ( X (,) Y ) |-> D ) : ( X (,) Y ) --> CC ) |
30 |
7 29
|
syl |
|- ( ph -> ( x e. ( X (,) Y ) |-> D ) : ( X (,) Y ) --> CC ) |
31 |
30
|
fvmptelrn |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> D e. CC ) |
32 |
28 31
|
mulcld |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> ( A x. D ) e. CC ) |
33 |
32 8
|
itgcl |
|- ( ph -> S. ( X (,) Y ) ( A x. D ) _d x e. CC ) |
34 |
24 33
|
pncan2d |
|- ( ph -> ( ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) - S. ( X (,) Y ) ( B x. C ) _d x ) = S. ( X (,) Y ) ( A x. D ) _d x ) |
35 |
23 9 32 8
|
itgadd |
|- ( ph -> S. ( X (,) Y ) ( ( B x. C ) + ( A x. D ) ) _d x = ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) ) |
36 |
|
fveq2 |
|- ( x = t -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) ) |
37 |
|
nfcv |
|- F/_ t ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) |
38 |
|
nfcv |
|- F/_ x RR |
39 |
|
nfcv |
|- F/_ x _D |
40 |
|
nfmpt1 |
|- F/_ x ( x e. ( X [,] Y ) |-> ( A x. C ) ) |
41 |
38 39 40
|
nfov |
|- F/_ x ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) |
42 |
|
nfcv |
|- F/_ x t |
43 |
41 42
|
nffv |
|- F/_ x ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) |
44 |
36 37 43
|
cbvitg |
|- S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) _d x = S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) _d t |
45 |
|
ax-resscn |
|- RR C_ CC |
46 |
45
|
a1i |
|- ( ph -> RR C_ CC ) |
47 |
|
iccssre |
|- ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) |
48 |
1 2 47
|
syl2anc |
|- ( ph -> ( X [,] Y ) C_ RR ) |
49 |
27 21
|
mulcld |
|- ( ( ph /\ x e. ( X [,] Y ) ) -> ( A x. C ) e. CC ) |
50 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
51 |
50
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
52 |
|
iccntr |
|- ( ( X e. RR /\ Y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
53 |
1 2 52
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
54 |
46 48 49 51 50 53
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) = ( RR _D ( x e. ( X (,) Y ) |-> ( A x. C ) ) ) ) |
55 |
|
reelprrecn |
|- RR e. { RR , CC } |
56 |
55
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
57 |
46 48 27 51 50 53
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( RR _D ( x e. ( X (,) Y ) |-> A ) ) ) |
58 |
57 10
|
eqtr3d |
|- ( ph -> ( RR _D ( x e. ( X (,) Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
59 |
46 48 21 51 50 53
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> C ) ) = ( RR _D ( x e. ( X (,) Y ) |-> C ) ) ) |
60 |
59 11
|
eqtr3d |
|- ( ph -> ( RR _D ( x e. ( X (,) Y ) |-> C ) ) = ( x e. ( X (,) Y ) |-> D ) ) |
61 |
56 28 16 58 22 31 60
|
dvmptmul |
|- ( ph -> ( RR _D ( x e. ( X (,) Y ) |-> ( A x. C ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( D x. A ) ) ) ) |
62 |
31 28
|
mulcomd |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> ( D x. A ) = ( A x. D ) ) |
63 |
62
|
oveq2d |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( B x. C ) + ( D x. A ) ) = ( ( B x. C ) + ( A x. D ) ) ) |
64 |
63
|
mpteq2dva |
|- ( ph -> ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( D x. A ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ) |
65 |
54 61 64
|
3eqtrd |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ) |
66 |
50
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
67 |
66
|
a1i |
|- ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
68 |
|
resmpt |
|- ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> C ) ) |
69 |
17 68
|
ax-mp |
|- ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> C ) |
70 |
|
rescncf |
|- ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) -> ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) ) |
71 |
17 5 70
|
mpsyl |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
72 |
69 71
|
eqeltrrid |
|- ( ph -> ( x e. ( X (,) Y ) |-> C ) e. ( ( X (,) Y ) -cn-> CC ) ) |
73 |
6 72
|
mulcncf |
|- ( ph -> ( x e. ( X (,) Y ) |-> ( B x. C ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
74 |
|
resmpt |
|- ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> A ) ) |
75 |
17 74
|
ax-mp |
|- ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> A ) |
76 |
|
rescncf |
|- ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) -> ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) ) |
77 |
17 4 76
|
mpsyl |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
78 |
75 77
|
eqeltrrid |
|- ( ph -> ( x e. ( X (,) Y ) |-> A ) e. ( ( X (,) Y ) -cn-> CC ) ) |
79 |
78 7
|
mulcncf |
|- ( ph -> ( x e. ( X (,) Y ) |-> ( A x. D ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
80 |
50 67 73 79
|
cncfmpt2f |
|- ( ph -> ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
81 |
65 80
|
eqeltrd |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
82 |
23 9 32 8
|
ibladd |
|- ( ph -> ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) e. L^1 ) |
83 |
65 82
|
eqeltrd |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) e. L^1 ) |
84 |
4 5
|
mulcncf |
|- ( ph -> ( x e. ( X [,] Y ) |-> ( A x. C ) ) e. ( ( X [,] Y ) -cn-> CC ) ) |
85 |
1 2 3 81 83 84
|
ftc2 |
|- ( ph -> S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) _d t = ( ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) - ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) ) ) |
86 |
44 85
|
eqtrid |
|- ( ph -> S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) _d x = ( ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) - ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) ) ) |
87 |
65
|
fveq1d |
|- ( ph -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) ) |
88 |
87
|
adantr |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) ) |
89 |
|
simpr |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> x e. ( X (,) Y ) ) |
90 |
|
ovex |
|- ( ( B x. C ) + ( A x. D ) ) e. _V |
91 |
|
eqid |
|- ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) |
92 |
91
|
fvmpt2 |
|- ( ( x e. ( X (,) Y ) /\ ( ( B x. C ) + ( A x. D ) ) e. _V ) -> ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) = ( ( B x. C ) + ( A x. D ) ) ) |
93 |
89 90 92
|
sylancl |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) = ( ( B x. C ) + ( A x. D ) ) ) |
94 |
88 93
|
eqtrd |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( B x. C ) + ( A x. D ) ) ) |
95 |
94
|
itgeq2dv |
|- ( ph -> S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) _d x = S. ( X (,) Y ) ( ( B x. C ) + ( A x. D ) ) _d x ) |
96 |
1
|
rexrd |
|- ( ph -> X e. RR* ) |
97 |
2
|
rexrd |
|- ( ph -> Y e. RR* ) |
98 |
|
ubicc2 |
|- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) ) |
99 |
96 97 3 98
|
syl3anc |
|- ( ph -> Y e. ( X [,] Y ) ) |
100 |
|
ovex |
|- ( A x. C ) e. _V |
101 |
100
|
csbex |
|- [_ Y / x ]_ ( A x. C ) e. _V |
102 |
|
eqid |
|- ( x e. ( X [,] Y ) |-> ( A x. C ) ) = ( x e. ( X [,] Y ) |-> ( A x. C ) ) |
103 |
102
|
fvmpts |
|- ( ( Y e. ( X [,] Y ) /\ [_ Y / x ]_ ( A x. C ) e. _V ) -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) = [_ Y / x ]_ ( A x. C ) ) |
104 |
99 101 103
|
sylancl |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) = [_ Y / x ]_ ( A x. C ) ) |
105 |
2 13
|
csbied |
|- ( ph -> [_ Y / x ]_ ( A x. C ) = F ) |
106 |
104 105
|
eqtrd |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) = F ) |
107 |
|
lbicc2 |
|- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> X e. ( X [,] Y ) ) |
108 |
96 97 3 107
|
syl3anc |
|- ( ph -> X e. ( X [,] Y ) ) |
109 |
100
|
csbex |
|- [_ X / x ]_ ( A x. C ) e. _V |
110 |
102
|
fvmpts |
|- ( ( X e. ( X [,] Y ) /\ [_ X / x ]_ ( A x. C ) e. _V ) -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) = [_ X / x ]_ ( A x. C ) ) |
111 |
108 109 110
|
sylancl |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) = [_ X / x ]_ ( A x. C ) ) |
112 |
1 12
|
csbied |
|- ( ph -> [_ X / x ]_ ( A x. C ) = E ) |
113 |
111 112
|
eqtrd |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) = E ) |
114 |
106 113
|
oveq12d |
|- ( ph -> ( ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) - ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) ) = ( F - E ) ) |
115 |
86 95 114
|
3eqtr3d |
|- ( ph -> S. ( X (,) Y ) ( ( B x. C ) + ( A x. D ) ) _d x = ( F - E ) ) |
116 |
35 115
|
eqtr3d |
|- ( ph -> ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) = ( F - E ) ) |
117 |
116
|
oveq1d |
|- ( ph -> ( ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) - S. ( X (,) Y ) ( B x. C ) _d x ) = ( ( F - E ) - S. ( X (,) Y ) ( B x. C ) _d x ) ) |
118 |
34 117
|
eqtr3d |
|- ( ph -> S. ( X (,) Y ) ( A x. D ) _d x = ( ( F - E ) - S. ( X (,) Y ) ( B x. C ) _d x ) ) |