| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgpowd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
itgpowd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
itgpowd.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
itgpowd.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 6 |
4 5
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 7 |
6
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℂ ) |
| 8 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 11 |
9 10
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 12 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
| 14 |
12 13
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ↑ 𝑁 ) ∈ ℂ ) |
| 15 |
11
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
| 16 |
|
expcncf |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 17 |
4 16
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 18 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
| 19 |
11 17 18
|
sylc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 20 |
15 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 21 |
|
cnicciblnc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ 𝐿1 ) |
| 22 |
1 2 20 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ 𝐿1 ) |
| 23 |
14 22
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 ∈ ℂ ) |
| 24 |
6
|
nnne0d |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≠ 0 ) |
| 25 |
7 14 22
|
itgmulc2 |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 ) |
| 26 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 ↑ 𝑁 ) = ( 𝑥 ↑ 𝑁 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) = ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ) |
| 29 |
28
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑡 = 𝑥 ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) = ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 32 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 34 |
33
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 35 |
34 14
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 ↑ 𝑁 ) ∈ ℂ ) |
| 36 |
31 35
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ∈ ℂ ) |
| 37 |
26 29 30 36
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) = ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ) |
| 38 |
37
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 ) |
| 39 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 41 |
10
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 42 |
41
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℂ ) |
| 43 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 45 |
4 44
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 47 |
42 46
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 48 |
4
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑁 ∈ ℂ ) |
| 50 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℂ ) |
| 51 |
49 50
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 52 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑁 ∈ ℕ0 ) |
| 53 |
42 52
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑡 ↑ 𝑁 ) ∈ ℂ ) |
| 54 |
51 53
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ∈ ℂ ) |
| 55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 𝑡 ∈ ℂ ) |
| 56 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 57 |
55 56
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 58 |
57
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) : ℂ ⟶ ℂ ) |
| 59 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 60 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 61 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
| 62 |
55 61
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 ↑ 𝑁 ) ∈ ℂ ) |
| 63 |
60 62
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ∈ ℂ ) |
| 64 |
63
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) : ℂ ⟶ ℂ ) |
| 65 |
|
dvexp |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) ) ) |
| 66 |
6 65
|
syl |
⊢ ( 𝜑 → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) ) ) |
| 67 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 68 |
48 67
|
pncand |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) = ( 𝑡 ↑ 𝑁 ) ) |
| 70 |
69
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) = ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) |
| 71 |
70
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 72 |
66 71
|
eqtrd |
⊢ ( 𝜑 → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 73 |
72
|
feq1d |
⊢ ( 𝜑 → ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) : ℂ ⟶ ℂ ↔ ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) : ℂ ⟶ ℂ ) ) |
| 74 |
64 73
|
mpbird |
⊢ ( 𝜑 → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) : ℂ ⟶ ℂ ) |
| 75 |
74
|
fdmd |
⊢ ( 𝜑 → dom ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ℂ ) |
| 76 |
10 75
|
sseqtrrid |
⊢ ( 𝜑 → ℝ ⊆ dom ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 77 |
|
dvres3 |
⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ) ) → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ↾ ℝ ) ) |
| 78 |
40 58 59 76 77
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ↾ ℝ ) ) |
| 79 |
72
|
reseq1d |
⊢ ( 𝜑 → ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ↾ ℝ ) = ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) ) |
| 80 |
78 79
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) ) |
| 81 |
|
resmpt |
⊢ ( ℝ ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
| 82 |
10 81
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
| 83 |
82
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ℝ D ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 84 |
|
resmpt |
⊢ ( ℝ ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 85 |
10 84
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 86 |
80 83 85
|
3eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 87 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 88 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 89 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 90 |
1 2 89
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 91 |
40 47 54 86 9 87 88 90
|
dvmptres2 |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 92 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 93 |
92 10
|
sstri |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 94 |
93
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 95 |
|
cncfmptc |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 96 |
7 94 59 95
|
syl3anc |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 97 |
|
resmpt |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ) |
| 98 |
93 97
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ) |
| 99 |
|
expcncf |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 100 |
4 99
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 101 |
|
rescncf |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) |
| 102 |
94 100 101
|
sylc |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 103 |
98 102
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 104 |
96 103
|
mulcncf |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 105 |
91 104
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 106 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
| 107 |
106
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 108 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℂ ) |
| 109 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℂ ) |
| 110 |
108 109
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 111 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ℂ ) |
| 112 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
| 113 |
111 112
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ↑ 𝑁 ) ∈ ℂ ) |
| 114 |
110 113
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ∈ ℂ ) |
| 115 |
|
cncfmptc |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 116 |
7 11 59 115
|
syl3anc |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 117 |
11
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ) |
| 118 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
| 119 |
11 100 118
|
sylc |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 120 |
117 119
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 121 |
116 120
|
mulcncf |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 122 |
|
cnicciblnc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ 𝐿1 ) |
| 123 |
1 2 121 122
|
syl3anc |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ 𝐿1 ) |
| 124 |
33 107 114 123
|
iblss |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ 𝐿1 ) |
| 125 |
91 124
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ∈ 𝐿1 ) |
| 126 |
11
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
| 127 |
|
expcncf |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 128 |
45 127
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 129 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
| 130 |
11 128 129
|
sylc |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 131 |
126 130
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 132 |
1 2 3 105 125 131
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐵 ) − ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐴 ) ) ) |
| 133 |
91
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) ) |
| 134 |
133
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) ) |
| 135 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
| 136 |
134 135
|
syl |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
| 137 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
| 138 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐵 ) → 𝑡 = 𝐵 ) |
| 139 |
138
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐵 ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) = ( 𝐵 ↑ ( 𝑁 + 1 ) ) ) |
| 140 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 141 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 142 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 143 |
140 141 3 142
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 144 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 145 |
144 45
|
expcld |
⊢ ( 𝜑 → ( 𝐵 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 146 |
137 139 143 145
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐵 ) = ( 𝐵 ↑ ( 𝑁 + 1 ) ) ) |
| 147 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐴 ) → 𝑡 = 𝐴 ) |
| 148 |
147
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐴 ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) = ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) |
| 149 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 150 |
140 141 3 149
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 151 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 152 |
151 45
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 153 |
137 148 150 152
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐴 ) = ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) |
| 154 |
146 153
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐵 ) − ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐴 ) ) = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
| 155 |
132 136 154
|
3eqtr3d |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
| 156 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 157 |
156 14
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ∈ ℂ ) |
| 158 |
1 2 157
|
itgioo |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 ) |
| 159 |
38 155 158
|
3eqtr3rd |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
| 160 |
25 159
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 ) = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
| 161 |
7 23 24 160
|
mvllmuld |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 = ( ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) ) |