Metamath Proof Explorer


Theorem resres

Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008)

Ref Expression
Assertion resres ABC=ABC

Proof

Step Hyp Ref Expression
1 df-res ABC=ABC×V
2 df-res AB=AB×V
3 2 ineq1i ABC×V=AB×VC×V
4 xpindir BC×V=B×VC×V
5 4 ineq2i ABC×V=AB×VC×V
6 df-res ABC=ABC×V
7 inass AB×VC×V=AB×VC×V
8 5 6 7 3eqtr4ri AB×VC×V=ABC
9 1 3 8 3eqtri ABC=ABC