Metamath Proof Explorer


Theorem ressid

Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypothesis ressid.1 B=BaseW
Assertion ressid WXW𝑠B=W

Proof

Step Hyp Ref Expression
1 ressid.1 B=BaseW
2 ssid BB
3 1 fvexi BV
4 eqid W𝑠B=W𝑠B
5 4 1 ressid2 BBWXBVW𝑠B=W
6 2 3 5 mp3an13 WXW𝑠B=W