Metamath Proof Explorer


Theorem ressip

Description: The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses resssca.1 H=G𝑠A
ressip.2 ,˙=𝑖G
Assertion ressip AV,˙=𝑖H

Proof

Step Hyp Ref Expression
1 resssca.1 H=G𝑠A
2 ressip.2 ,˙=𝑖G
3 ipid 𝑖=Slot𝑖ndx
4 ipndxnbasendx 𝑖ndxBasendx
5 1 2 3 4 resseqnbas AV,˙=𝑖H