Metamath Proof Explorer


Theorem ressn2

Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024)

Ref Expression
Assertion ressn2 RA=au|a=AARu

Proof

Step Hyp Ref Expression
1 dfres2 RA=au|aAaRu
2 velsn aAa=A
3 2 anbi1i aAaRua=AaRu
4 eqbrb a=AaRua=AARu
5 3 4 bitri aAaRua=AARu
6 5 opabbii au|aAaRu=au|a=AARu
7 1 6 eqtri RA=au|a=AARu