Metamath Proof Explorer


Theorem resvplusg

Description: +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses resvbas.1 H=G𝑣A
resvplusg.2 +˙=+G
Assertion resvplusg AV+˙=+H

Proof

Step Hyp Ref Expression
1 resvbas.1 H=G𝑣A
2 resvplusg.2 +˙=+G
3 plusgid +𝑔=Slot+ndx
4 scandxnplusgndx Scalarndx+ndx
5 4 necomi +ndxScalarndx
6 1 2 3 5 resvlem AV+˙=+H