Metamath Proof Explorer


Theorem retancl

Description: The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion retancl AcosA0tanA

Proof

Step Hyp Ref Expression
1 recn AA
2 tanval AcosA0tanA=sinAcosA
3 1 2 sylan AcosA0tanA=sinAcosA
4 recoscl AcosA
5 resincl AsinA
6 redivcl sinAcosAcosA0sinAcosA
7 5 6 syl3an1 AcosAcosA0sinAcosA
8 4 7 syl3an2 AAcosA0sinAcosA
9 8 3anidm12 AcosA0sinAcosA
10 3 9 eqeltrd AcosA0tanA